Acyclic Edge Coloring of Triangle-free 1-planar Graphs

被引:2
|
作者
Wen Yao SONG
Lian Ying MIAO
机构
[1] InstituteofMathematics,ChinaUniversityofMiningandTechnology,Xuzhou
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ a(G), is the least number of colors such that G has an acyclic edge coloring. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that χ a(G) ≤Δ(G) + 22, if G is a triangle-free 1-planar graph.
引用
收藏
页码:1563 / 1570
页数:8
相关论文
共 50 条
  • [41] Acyclic colouring of 1-planar graphs
    Borodin, OV
    Kostochka, AV
    Raspaud, A
    Sopena, E
    DISCRETE APPLIED MATHEMATICS, 2001, 114 (1-3) : 29 - 41
  • [42] Equitable coloring in 1-planar graphs
    Cranston, Daniel W.
    Mahmoud, Reem
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [43] Homomorphisms of 2-Edge-Colored Triangle-Free Planar Graphs
    Ochem, Pascal
    Pinlou, Alexandre
    Sen, Sagnik
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 258 - 277
  • [44] Acyclic edge coloring of planar graphs with Δ colors
    Hudak, David
    Kardos, Frantisek
    Luzar, Borut
    Sotak, Roman
    Skrekovski, Riste
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (09) : 1356 - 1368
  • [45] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478
  • [46] ACYCLIC LIST EDGE COLORING OF PLANAR GRAPHS
    Lai, Hsin-Hao
    Lih, Ko-Wei
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2010, 5 (04): : 413 - 436
  • [47] 3-Coloring Triangle-Free Planar Graphs with a Precolored 9-Cycle
    Choi, Ilkyoo
    Ekstein, Jan
    Holub, Premysl
    Lidicky, Bernard
    COMBINATORIAL ALGORITHMS, IWOCA 2014, 2015, 8986 : 98 - 109
  • [49] Triangle-free planar graphs as segments intersection graphs
    de Castro, N
    Cobos, FJ
    Dana, JC
    Márquez, A
    Noy, M
    GRAPH DRAWING, 1999, 1731 : 341 - 350
  • [50] Coloring triangle-free graphs with local list sizes
    Davies, Ewan
    de Joannis de Verclos, Remi
    Kang, Ross J.
    Pirot, Francois
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 730 - 744