Acyclic Edge Coloring of Triangle-free 1-planar Graphs

被引:2
|
作者
Wen Yao SONG
Lian Ying MIAO
机构
[1] InstituteofMathematics,ChinaUniversityofMiningandTechnology,Xuzhou
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
A proper edge coloring of a graph G is acyclic if there is no 2-colored cycle in G. The acyclic chromatic index of G, denoted by χ a(G), is the least number of colors such that G has an acyclic edge coloring. A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, it is proved that χ a(G) ≤Δ(G) + 22, if G is a triangle-free 1-planar graph.
引用
收藏
页码:1563 / 1570
页数:8
相关论文
共 50 条
  • [21] On the Equitable Edge-Coloring of 1-Planar Graphs and Planar Graphs
    Dai-Qiang Hu
    Jian-Liang Wu
    Donglei Yang
    Xin Zhang
    Graphs and Combinatorics, 2017, 33 : 945 - 953
  • [22] Coloring triangle-free graphs on surfaces
    Dvorak, Zdenek
    Kral, Daniel
    Thomas, Robin
    ALGORITHMS AND COMPUTATION, 2007, 4835 : 2 - +
  • [23] Coloring triangle-free graphs on surfaces
    Dvorak, Zdenek
    Kral, Daniel
    Thomas, Robin
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 120 - +
  • [24] Oriented Coloring of Triangle-Free Planar Graphs and 2-Outerplanar Graphs
    Pascal Ochem
    Alexandre Pinlou
    Graphs and Combinatorics, 2014, 30 : 439 - 453
  • [25] Oriented Coloring of Triangle-Free Planar Graphs and 2-Outerplanar Graphs
    Ochem, Pascal
    Pinlou, Alexandre
    GRAPHS AND COMBINATORICS, 2014, 30 (02) : 439 - 453
  • [26] Three-Coloring Triangle-Free Planar Graphs in Linear Time
    Dvorak, Zdenek
    Kawarabayashi, Ken-Ichi
    Thomas, Robin
    ACM TRANSACTIONS ON ALGORITHMS, 2011, 7 (04)
  • [27] Three-coloring triangle-free planar graphs in linear time
    Dvorak, Zdenek
    Kawarabayashi, Ken-ichi
    Thomas, Robin
    PROCEEDINGS OF THE TWENTIETH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2009, : 1176 - +
  • [28] The height of a 4-cycle in triangle-free 1-planar graphs with minimum degree 5
    Borodin O.V.
    Dmitriev I.G.
    Ivanova A.O.
    Journal of Applied and Industrial Mathematics, 2009, 3 (01) : 28 - 31
  • [29] Acyclic edge coloring of planar graphs
    Bu, Yuehua
    Jia, Qi
    Zhu, Hongguo
    Zhu, Junlei
    AIMS MATHEMATICS, 2022, 7 (06): : 10828 - 10841
  • [30] List edge and list total coloring of 1-planar graphs
    Xin Zhang
    Jianliang Wu
    Guizhen Liu
    Frontiers of Mathematics in China, 2012, 7 : 1005 - 1018