A NOTE ON CONICAL KHLER-RICCI FLOW ON MINIMAL ELLIPTIC KHLER SURFACES

被引:1
|
作者
张雅山
机构
[1] DepartmentofMathematics,UniversityofMacau
关键词
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
We prove that, under a semi-ampleness type assumption on the twisted canonical line bundle, the conical Khler-Ricci flow on a minimal elliptic Khler surface converges in the sense of currents to a generalized conical Khler-Einstein on its canonical model. Moreover,the convergence takes place smoothly outside the singular fibers and the chosen divisor.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 50 条
  • [21] A Note on Kähler–Ricci Flow on Fano Threefolds
    Minghao Miao
    Gang Tian
    Peking Mathematical Journal, 2025, 8 (1) : 191 - 199
  • [22] On the Geometry of Steady Toric Kähler-Ricci Solitons
    Ustinovskiy, Yury
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (03)
  • [23] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [24] The Kähler Ricci flow on Fano surfaces (I)
    Xiuxiong Chen
    Bing Wang
    Mathematische Zeitschrift, 2012, 270 : 577 - 587
  • [25] Kähler-Ricci solitons on toric Fano orbifolds
    Yalong Shi
    Xiaohua Zhu
    Mathematische Zeitschrift, 2012, 271 : 1241 - 1251
  • [26] 完备Khler流形上Khler-Ricci流的局部Harnack估计
    朱晓睿
    中国科学:数学, 2010, 40 (09) : 873 - 879
  • [27] The openness theorems on convergence of the twisted Kähler-Ricci flows
    Liu, Jiawei
    Zhang, Xi
    SCIENCE CHINA-MATHEMATICS, 2025,
  • [28] Geometric Regularity of Blow-up Limits of the Kähler-Ricci Flow
    Hallgren, Max
    Jian, Wangjian
    Song, Jian
    Tian, Gang
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (06) : 1899 - 1972
  • [29] Remarks on Kähler Ricci Flow
    Xiuxiong Chen
    Bing Wang
    Journal of Geometric Analysis, 2010, 20 : 335 - 353
  • [30] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579