Remarks on Kähler Ricci Flow

被引:0
|
作者
Xiuxiong Chen
Bing Wang
机构
[1] University of Wisconsin–Madison,Department of Mathematics
[2] Princeton University,Department of Mathematics
来源
关键词
Ricci Soliton; Constant Scalar Curvature; Ricci Flow; Positive Scalar Curvature; Fano Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We show the convergence of Kähler Ricci flow directly if the α-invariant of the canonical class is greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{n}{n+1}$\end{document}. Applying these convergence theorems, we can give a Kähler Ricci flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of KE metrics on a lot of Fano surfaces can be proved by flow method. Note that this geometric conclusion (based on the same assumption) was established earlier via elliptic method by Tian (Invent. Math. 89(2):225–246, 1987; Invent. Math. 101(1):101–172, 1990; Invent. Math. 130:1–39, 1997). However, a new proof based on Kähler Ricci flow should be still interesting in its own right.
引用
收藏
页码:335 / 353
页数:18
相关论文
共 50 条
  • [1] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579
  • [2] A note on Kähler–Ricci flow
    Chengjie Yu
    Mathematische Zeitschrift, 2012, 272 : 191 - 201
  • [3] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [4] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595
  • [5] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [6] Some progresses on Kähler–Ricci flow
    Gang Tian
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 251 - 263
  • [7] On a twisted conical Kähler–Ricci flow
    Yashan Zhang
    Annals of Global Analysis and Geometry, 2019, 55 : 69 - 98
  • [8] Stability of Kähler-Ricci Flow
    Xiuxiong Chen
    Haozhao Li
    Journal of Geometric Analysis, 2010, 20 : 306 - 334
  • [9] The Kähler–Ricci flow on Fano bundles
    Xin Fu
    Shijin Zhang
    Mathematische Zeitschrift, 2017, 286 : 1605 - 1626
  • [10] Hyperbolic Khler-Ricci flow
    XU Chao Department of Mathematics
    Science China(Mathematics), 2010, 53 (11) : 3027 - 3036