Remarks on Kähler Ricci Flow

被引:0
|
作者
Xiuxiong Chen
Bing Wang
机构
[1] University of Wisconsin–Madison,Department of Mathematics
[2] Princeton University,Department of Mathematics
来源
关键词
Ricci Soliton; Constant Scalar Curvature; Ricci Flow; Positive Scalar Curvature; Fano Manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We show the convergence of Kähler Ricci flow directly if the α-invariant of the canonical class is greater than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{n}{n+1}$\end{document}. Applying these convergence theorems, we can give a Kähler Ricci flow proof of Calabi conjecture on such Fano manifolds. In particular, the existence of KE metrics on a lot of Fano surfaces can be proved by flow method. Note that this geometric conclusion (based on the same assumption) was established earlier via elliptic method by Tian (Invent. Math. 89(2):225–246, 1987; Invent. Math. 101(1):101–172, 1990; Invent. Math. 130:1–39, 1997). However, a new proof based on Kähler Ricci flow should be still interesting in its own right.
引用
收藏
页码:335 / 353
页数:18
相关论文
共 50 条