Global Well-posedness for the Fifth-order mKdV Equation

被引:0
|
作者
Xin Jun GAO
机构
[1] DepartmentofMathematicalSciences,UniversityofScienceandTechnologyofChina
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We prove the global well-posedness for the Cauchy problem of fifth-order modified Korteweg–de Vries equation in Sobolev spaces Hs(R) for s>-(3/(22)).The main approach is the"I-method"together with the multilinear multiplier analysis.
引用
收藏
页码:1015 / 1027
页数:13
相关论文
共 50 条
  • [41] Global Well-Posedness for Coupled System of mKdV Equations in Analytic Spaces
    Zennir, Khaled
    Boukarou, Aissa
    Alkhudhayr, Rehab Nasser
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [42] Local and global well-posedness for the Ostrovsky equation
    Linares, F
    Milanés, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) : 325 - 340
  • [43] GLOBAL WELL-POSEDNESS OF THE CAUCHY PROBLEM OF A HIGHER-ORDER SCHRODINGER EQUATION
    Wang, Hua
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2007,
  • [44] Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces
    Aissa Boukarou
    Kaddour Guerbati
    Khaled Zennir
    Monatshefte für Mathematik, 2020, 193 : 763 - 782
  • [45] Global well-posedness for high-order Landau-Lifshitz equation
    You, Shujun
    Guo, Boling
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [46] The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation
    Zhao Zhang
    Biao Li
    Abdul-Majid Wazwaz
    Qi Guo
    The European Physical Journal Plus, 137
  • [47] Well-posedness and regularity of the fifth order Kadomtsev–Petviashvili I equation in the analytic Bourgain spaces
    Boukarou A.
    Zennir K.
    Guerbati K.
    Svetlin G.G.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2020, 66 (2) : 255 - 272
  • [48] The generation mechanism of multiple-pole solutions for the fifth-order mKdV equation
    Zhang, Zhao
    Li, Biao
    Wazwaz, Abdul-Majid
    Guo, Qi
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (02):
  • [49] LOCAL WELL-POSEDNESS IN LOW REGULARITY OF THE MKDV EQUATION WITH PERIODIC BOUNDARY CONDITION
    Nakanishi, Kenji
    Takaoka, Hideo
    Tsutsumi, Yoshio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 28 (04) : 1635 - 1654
  • [50] Sharp global well-posedness for the fractional BBM equation
    Wang, Ming
    Zhang, Zaiyun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (15) : 5906 - 5918