Global Well-posedness for the Fifth-order mKdV Equation

被引:0
|
作者
Xin Jun GAO
机构
[1] DepartmentofMathematicalSciences,UniversityofScienceandTechnologyofChina
关键词
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
We prove the global well-posedness for the Cauchy problem of fifth-order modified Korteweg–de Vries equation in Sobolev spaces Hs(R) for s>-(3/(22)).The main approach is the"I-method"together with the multilinear multiplier analysis.
引用
收藏
页码:1015 / 1027
页数:13
相关论文
共 50 条
  • [21] Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval
    Zhao, Xiangqing
    Wang, Chengqiang
    Bao, Jifeng
    OPEN MATHEMATICS, 2023, 21 (01):
  • [22] An invariance of the potential fifth-order MKdV equation
    Tian Yongbo
    Nan Zhijie
    Tian Chou
    Applied Mathematics-A Journal of Chinese Universities, 2006, 21 (2) : 152 - 156
  • [23] Local Well-Posedness of Periodic Fifth-Order KdV-Type Equations
    Yi Hu
    Xiaochun Li
    The Journal of Geometric Analysis, 2015, 25 : 709 - 739
  • [24] Local Well-Posedness of Periodic Fifth-Order KdV-Type Equations
    Hu, Yi
    Li, Xiaochun
    JOURNAL OF GEOMETRIC ANALYSIS, 2015, 25 (02) : 709 - 739
  • [25] Global well-posedness and asymptotic behavior of stochastic mKdV equation with fractional dissipation
    Shang Wu
    Wei Yan
    Chenping Hou
    Jianhua Huang
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [26] Global well-posedness and asymptotic behavior of stochastic mKdV equation with fractional dissipation
    Wu, Shang
    Yan, Wei
    Hou, Chenping
    Huang, Jianhua
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [27] GLOBAL WELL-POSEDNESS AND I METHOD FOR THE FIFTH ORDER KORTEWEG-DE VRIES EQUATION
    Chen, Wengu
    Guo, Zihua
    JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 : 121 - 156
  • [28] Well-posedness and Ill-posedness for Linear Fifth-Order Dispersive Equations in the Presence of Backwards Diffusion
    Ambrose, David M.
    Woods, Jacob
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2022, 34 (02) : 897 - 917
  • [29] Well-posedness and Ill-posedness for Linear Fifth-Order Dispersive Equations in the Presence of Backwards Diffusion
    David M. Ambrose
    Jacob Woods
    Journal of Dynamics and Differential Equations, 2022, 34 : 897 - 917
  • [30] Global well-posedness for the fifth order Kadomtsev-Petviashvili II equation in three dimensional space
    Li, Junfeng
    Meng, Kun
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 157 - 175