An Implicit Degree Ore-condition for Pancyclicity of Graphs

被引:0
|
作者
Hao LI [1 ,2 ]
Jun Qing CAI [3 ]
机构
[1] LRI, UMR , CNRS and Universit Paris-Sud , F- Orsay, France
[2] Institute for Interdisciplinary Research, Jianghan University
[3] School of Management, Qufu Normal
关键词
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
摘要
In 1989, Zhu, Li and Deng introduced the definition of implicit degree of a vertex v in a graph G, denoted by id(v). In this paper, we prove that if G is a 2-connected graph of order n such that id(u) + id(v) ≥ n for each pair of nonadjacent vertices u and v in G, then G is pancyclic unless G is bipartite, or else n = 4r, r ≥ 2 and G is isomorphic to F4r .
引用
收藏
页码:1773 / 1780
页数:8
相关论文
共 50 条
  • [21] An implicit degree condition for relative length of long paths and cycles in graphs
    Jun-qing Cai
    Hao Li
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 365 - 372
  • [22] An Implicit Degree Condition for Relative Length of Long Paths and Cycles in Graphs
    Cai, Jun-qing
    Li, Hao
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 365 - 372
  • [23] A DEGREE CONDITION IMPLYING ORE-TYPE CONDITION FOR EVEN [2,b]-FACTORS IN GRAPHS
    Tsuchiya, Shoichi
    Yashima, Takamasa
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (03) : 797 - 809
  • [24] An implicit degree condition for k-connected 2-heavy graphs to be hamiltonian
    Cai, Junqing
    Li, Hao
    Zhang, Yuzhong
    INFORMATION PROCESSING LETTERS, 2018, 134 : 9 - 13
  • [25] Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition
    Lu-yi LI
    Ping LI
    Xue-liang LI
    ActaMathematicaeApplicataeSinica, 2024, 40 (02) : 269 - 274
  • [26] Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition
    Li, Lu-yi
    Li, Ping
    Li, Xue-liang
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (02): : 269 - 274
  • [27] PANCYCLICITY IN LINE GRAPHS
    李相文
    ActaMathematicaScientia, 1998, (02) : 212 - 220
  • [28] A DEGREE CHARACTERIZATION OF PANCYCLICITY
    ALDRED, REL
    HOLTON, DA
    MIN, ZK
    DISCRETE MATHEMATICS, 1994, 127 (1-3) : 23 - 29
  • [29] ORE TYPE CONDITION AND HAMILTONIAN GRAPHS
    Zhao, Kewen
    MATEMATICKI VESNIK, 2013, 65 (03): : 412 - 418
  • [30] Pancyclicity in line graphs
    Li, XW
    ACTA MATHEMATICA SCIENTIA, 1998, 18 (02) : 212 - 220