Eigenvalue approximation from below using non-conforming finite elements

被引:13
|
作者
YANG YiDu ZHANG ZhiMin LIN FuBiao School of Mathematics and Computer ScienceGuizhou Normal UniversityGuiyang China Department of MathematicsWayne State UniversityDetroitMI USA [1 ,2 ,11 ,550001 ,2 ,48202 ]
机构
关键词
D O I
暂无
中图分类号
O151.21 [矩阵论];
学科分类号
摘要
This is a survey article about using non-conforming finite elements in solving eigenvalue problems of elliptic operators,with emphasis on obtaining lower bounds. In addition,this article also contains some new materials for eigenvalue approximations of the Laplace operator,which include:1) the proof of the fact that the non-conforming Crouzeix-Raviart element approximates eigenvalues associated with smooth eigenfunctions from below;2) the proof of the fact that the non-conforming EQ rot1 element approximates eigenvalues from below on polygonal domains that can be decomposed into rectangular elements;3) the explanation of the phenomena that numerical eigenvalues λ 1,h and λ 3,h of the non-conforming Q rot1 element approximate the true eigenvalues from below for the L-shaped domain. Finally,we list several unsolved problems.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 50 条
  • [11] FINITE-ELEMENT METHODS FOR ELLIPTIC EQUATIONS USING NON-CONFORMING ELEMENTS
    BAKER, GA
    MATHEMATICS OF COMPUTATION, 1977, 31 (137) : 45 - 59
  • [12] NON-CONFORMING MESH GLUING IN THE FINITE-ELEMENTS METHOD
    QUIROZ, L
    BECKERS, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (13) : 2165 - 2184
  • [13] Convergence analysis of non-conforming Trigonometric Finite Wave Elements
    Heubeck, B.
    Pflaum, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 1920 - 1929
  • [14] RELATIONSHIP BETWEEN COMPLEMENTARY AND NON-CONFORMING FINITE-ELEMENTS
    WERNER, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (09): : 501 - 506
  • [15] Eigenvalue approximation by mixed non-conforming finite element methods The determination of the vibrational modes of a linear elastic solid
    Dello Russo, Anahi
    CALCOLO, 2014, 51 (04) : 563 - 597
  • [16] Eigenvalue approximation by mixed non-conforming finite element methodsThe determination of the vibrational modes of a linear elastic solid
    Anahí Dello Russo
    Calcolo, 2014, 51 : 563 - 597
  • [17] Continuous Finite-Elements on Non-Conforming Grids Using Discontinuous Galerkin Stabilization
    Dedner, Andreas
    Kloefkorn, Robert
    Kraenkel, Mirko
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 207 - 215
  • [18] Topology optimization using non-conforming finite elements: three-dimensional case
    Jang, GW
    Lee, S
    Kim, YY
    Sheen, D
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 63 (06) : 859 - 875
  • [19] Finite element analysis using non-conforming mesh
    Kumar, Ashok V.
    Burla, Ravi
    Padmanabhan, Sanjeev
    Gu, Linxia
    27TH COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 2, PTS A AND B 2007: PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2008, : 119 - 131
  • [20] Non-conforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    arXiv, 2019,