Topology optimization using non-conforming finite elements: three-dimensional case

被引:26
|
作者
Jang, GW
Lee, S
Kim, YY [1 ]
Sheen, D
机构
[1] Seoul Natl Univ, Sch Mech & Aerosp Engn, Seoul 151742, South Korea
[2] Kunsan Natl Univ, Sch Mech Engn, Kunsan 573701, Chonbuk, South Korea
[3] Seoul Natl Univ, Natl Creat Res Initiat Ctr Multiscale Design, Seoul 151742, South Korea
[4] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
关键词
topology optimization; three-dimensional non-conforming finite element; numerical instability;
D O I
10.1002/nme.1302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As in the case of two-dimensional topology design optimization, numerical instability problems similar to the formation of two-dimensional checkerboard patterns occur if the standard eight-node conforming brick element is used. Motivated by the recent success of the two-dimensional non-conforming elements in completely eliminating checkerboard patterns, we aim at investigating the performance of three-dimensional non-conforming elements in controlling the patterns that are estimated overly stiff by the brick elements. To this end, we will investigate how accurately the non-conforming elements estimate the stiffness of the patterns. The stiffness estimation is based on the homogenization method by assuming the periodicity of the patterns. To verify the superior performance of the elements, we consider three-dimensional compliance minimization and compliant mechanism design problems and compare the results by the non-conforming element and the standard 8-node conforming brick element. Copyright (c) 2005 John Wiley & Sons, Ltd.
引用
收藏
页码:859 / 875
页数:17
相关论文
共 50 条
  • [1] Three-dimensional non-conforming elements
    Taiebat, H. A. (taiebat@civil.usvd.edu.au), 2001, University of Sydney
  • [2] Checkerboard-free topology optimization using non-conforming finite elements
    Jang, GW
    Jeong, JH
    Kim, YY
    Sheen, D
    Park, C
    Kim, MN
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (12) : 1717 - 1735
  • [3] Eigenvalue approximation from below using non-conforming finite elements
    YANG YiDu ZHANG ZhiMin LIN FuBiao School of Mathematics and Computer ScienceGuizhou Normal UniversityGuiyang China Department of MathematicsWayne State UniversityDetroitMI USA
    ScienceinChina(SeriesA:Mathematics), 2010, 53 (01) : 137 - 150
  • [4] Numerical simulation of polymer flows using non-conforming finite elements
    Joie, Julie
    Graebling, Didier
    COMPUTERS & FLUIDS, 2013, 79 : 178 - 189
  • [5] Eigenvalue approximation from below using non-conforming finite elements
    Yang YiDu
    Zhang ZhiMin
    Lin FuBiao
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (01) : 137 - 150
  • [6] Eigenvalue approximation from below using non-conforming finite elements
    YiDu Yang
    ZhiMin Zhang
    FuBiao Lin
    Science in China Series A: Mathematics, 2010, 53 : 137 - 150
  • [7] Eigenvalue approximation from below using non-conforming finite elements
    YANG YiDu 1
    2 Department of Mathematics
    Science China Mathematics, 2010, (01) : 137 - 150
  • [8] Non-conforming finite element method with tetrahedral elements
    Ito, Yasuhisa
    Igarashi, Hajime
    Watanabe, Kota
    Iijima, Yosuke
    Kawano, Kenji
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2012, 39 (1-4) : 739 - 745
  • [9] Three-dimensional modelling of controlled source electro-magnetic surveys using non-conforming finite element methods
    Elias, Matias W.
    Zyserman, Fabio, I
    Rosas-Carbajal, Marina
    Manassero, Maria Constanza
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2022, 229 (02) : 1133 - 1151
  • [10] Non-conforming and conforming five-node quadrilateral graded finite elements
    Gautam, Asim
    Kim, Jeongho
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (21) : 5173 - 5187