首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Fitting the Bartlett–Lewis rainfall model using Approximate Bayesian Computation
被引:4
|
作者
:
Aryal N.R.
论文数:
0
引用数:
0
h-index:
0
机构:
School of Mathematics and Statistics, University of Melbourne
School of Mathematics and Statistics, University of Melbourne
Aryal N.R.
[
1
]
Jones O.D.
论文数:
0
引用数:
0
h-index:
0
机构:
School of Mathematics, Cardiff University
School of Mathematics and Statistics, University of Melbourne
Jones O.D.
[
2
]
机构
:
[1]
School of Mathematics and Statistics, University of Melbourne
[2]
School of Mathematics, Cardiff University
来源
:
Aryal, Nanda R. (naryal@student.unimelb.edu.au)
|
1600年
/ Elsevier B.V.卷
/ 175期
关键词
:
Approximate Bayesian Computation;
Bartlett–Lewis process;
Generalised method of moments;
Markov Chain Monte Carlo;
Rainfall;
Simulation;
D O I
:
10.1016/j.matcom.2019.10.018
中图分类号
:
学科分类号
:
摘要
:
The Bartlett–Lewis (BL) rainfall model is a stochastic model for the rainfall at a single point in space, constructed using a cluster point process. The cluster process is constructed by taking a primary/parent process, called the storm arrival process in our context, and then attaching to each storm point a finite secondary/daughter point process, called a cell arrival process. To each cell arrival point we then attach a rain cell, with an associated rainfall duration and intensity. The total rainfall at time t is then the sum of the intensities from all active cells at that time. Because it has an intractable likelihood function, in the past the BL model has been fitted using the Generalised Method of Moments (GMM). The purpose of this paper is to show that Approximate Bayesian Computation (ABC) can also be used to fit this model, and moreover that it gives a better fit than GMM. GMM fitting matches theoretical and observed moments of the process, and thus is restricted to moments for which you have an analytic expression. ABC fitting compares the observed process to simulations, and thus places no restrictions on the statistics used to compare them. The penalty we pay for this increased flexibility is an increase in computational time. © 2019 International Association for Mathematics and Computers in Simulation (IMACS)
引用
收藏
页码:153 / 163
页数:10
相关论文
共 50 条
[31]
IMPROVEMENTS TO THE MODELING OF BRITISH RAINFALL USING A MODIFIED RANDOM PARAMETER BARTLETT-LEWIS RECTANGULAR PULSE MODEL
ONOF, C
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Civil Engineering, Imperial College of Science, Technology and Medicine, London
ONOF, C
WHEATER, HS
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Civil Engineering, Imperial College of Science, Technology and Medicine, London
WHEATER, HS
JOURNAL OF HYDROLOGY,
1994,
157
(1-4)
: 177
-
195
[32]
Modelling extreme rainfalls using a modified random pulse Bartlett-Lewis stochastic rainfall model (with uncertainty)
Cameron, D
论文数:
0
引用数:
0
h-index:
0
机构:
Environm Agcy, Water Resources, Newcastle Upon Tyne NE4 7AR, Tyne & Wear, England
Cameron, D
Beven, K
论文数:
0
引用数:
0
h-index:
0
机构:
Environm Agcy, Water Resources, Newcastle Upon Tyne NE4 7AR, Tyne & Wear, England
Beven, K
Tawn, J
论文数:
0
引用数:
0
h-index:
0
机构:
Environm Agcy, Water Resources, Newcastle Upon Tyne NE4 7AR, Tyne & Wear, England
Tawn, J
ADVANCES IN WATER RESOURCES,
2000,
24
(02)
: 203
-
211
[33]
Modelling point rainfall occurrences with the Modified Bartlett-Lewis Rectangular Pulses Model
Khaliq, MN
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Engineering Hydrology, University College, Galway
Khaliq, MN
Cunnane, C
论文数:
0
引用数:
0
h-index:
0
机构:
Department of Engineering Hydrology, University College, Galway
Cunnane, C
JOURNAL OF HYDROLOGY,
1996,
180
(1-4)
: 109
-
138
[34]
Approximate Bayesian computation using the Fourier integral theorem
Rotiroti, Frank
论文数:
0
引用数:
0
h-index:
0
机构:
UT Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
UT Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
Rotiroti, Frank
Walker, Stephen G.
论文数:
0
引用数:
0
h-index:
0
机构:
UT Austin, Dept Math, Austin, TX USA
UT Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
Walker, Stephen G.
ELECTRONIC JOURNAL OF STATISTICS,
2024,
18
(02):
: 5156
-
5197
[35]
Test for simultaneous divergence using approximate Bayesian computation
Hickerson, Michael J.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA
Hickerson, Michael J.
Stahl, Eli A.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA
Stahl, Eli A.
Lessios, H. A.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Berkeley, Museum Vertebrate Zool, Berkeley, CA 94720 USA
Lessios, H. A.
EVOLUTION,
2006,
60
(12)
: 2435
-
2453
[36]
Estimating species trees using approximate Bayesian computation
Fan, Helen Hang
论文数:
0
引用数:
0
h-index:
0
机构:
Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA
Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA
Fan, Helen Hang
Kubatko, Laura S.
论文数:
0
引用数:
0
h-index:
0
机构:
Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA
Ohio State Univ, Dept Stat, Columbus, OH 43210 USA
Ohio State Univ, Dept Evolut Ecol & Organismal Biol, Columbus, OH 43210 USA
Kubatko, Laura S.
MOLECULAR PHYLOGENETICS AND EVOLUTION,
2011,
59
(02)
: 354
-
363
[37]
Stochastic Modeling of Rainfall in Peninsular Malaysia Using Bartlett Lewis Rectangular Pulses Models
Hanaish, Ibrahim Suliman
论文数:
0
引用数:
0
h-index:
0
机构:
Misurata Univ, Fac Sci, Dept Stat, 4th Rounded St, Misurata 051, Libya
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
Misurata Univ, Fac Sci, Dept Stat, 4th Rounded St, Misurata 051, Libya
Hanaish, Ibrahim Suliman
Ibrahim, Kamarulzaman
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
Misurata Univ, Fac Sci, Dept Stat, 4th Rounded St, Misurata 051, Libya
Ibrahim, Kamarulzaman
Jemain, Abdul Aziz
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Kebangsaan Malaysia, Fac Sci & Technol, Sch Math Sci, Bangi 43600, Selangor, Malaysia
Misurata Univ, Fac Sci, Dept Stat, 4th Rounded St, Misurata 051, Libya
Jemain, Abdul Aziz
MODELLING AND SIMULATION IN ENGINEERING,
2011,
2011
[38]
Hierarchical Approximate Bayesian Computation
Brandon M. Turner
论文数:
0
引用数:
0
h-index:
0
机构:
Stanford University,
Brandon M. Turner
Trisha Van Zandt
论文数:
0
引用数:
0
h-index:
0
机构:
Stanford University,
Trisha Van Zandt
Psychometrika,
2014,
79
: 185
-
209
[39]
Approximate Bayesian computation methods
Gilles Celeux
论文数:
0
引用数:
0
h-index:
0
机构:
Université Paris-Sud,Département de Mathématiques, Inria Saclay
Gilles Celeux
Statistics and Computing,
2012,
22
: 1165
-
1166
[40]
Approximate Methods for Bayesian Computation
Craiu, Radu, V
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
Craiu, Radu, V
Levi, Evgeny
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
Univ Toronto, Dept Stat Sci, Toronto, ON, Canada
Levi, Evgeny
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION,
2023,
10
: 379
-
399
←
1
2
3
4
5
→