Improved Road Damage Detection Algorithm of YOLOv8

被引:7
|
作者
Li, Song [1 ]
Shi, Tao [2 ]
Jing, Fangke [1 ]
机构
[1] School of Electrical Engineering, North China University of Science and Technology, Hebei, Tangshan,063210, China
[2] School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin,300384, China
关键词
Deep learning - Digital arithmetic - Motor transportation - Parameter estimation - Roads and streets - Signal detection;
D O I
10.3778/j.issn.1002-8331.2306-0205
中图分类号
学科分类号
摘要
Road damage detection is an important task to ensure road safety and realize timely repair of road damage. Aiming at the problems of low detection efficiency, high cost and difficulty in applying to mobile terminal devices in existing Road Damage detection algorithms, a lightweight road damage detection algorithm YOLOV8-Road Damage (YOLOV8-RD)with improved YOLOv8 is proposed. First, combining the advantages of CNN and Transformer, a BOT module that can extract global and local feature information of road damage images is proposed to adapt to the large-span and elongated features of crack objects. Then, coordinate attention(CA)is introduced in the end of backbone network and neck network to embed the location information into the channel attention, strengthen the feature extraction ability, and suppress the interference of irrelevant features. In addition, C2fGhost module is used in YOLOv8 neck network to reduce floating point computation in feature channel fusion process, reduce the number of model parameters, and improve feature expression performance. The experimental results show that in RDD2022 data set and Road Damage data set, the improved algorithm is 2% and 3.7% higher than the original algorithm compared with mAP50, while the number of model parameters is only 2.8×106 and the computation amount is only 7.3×109, which are reduced by 6.7% and 8.5% respectively. The detection speed of the algorithm reaches 88 FPS, which can accurately detect the road damage target in real time. Compared with other mainstream target detection algorithms, the effectiveness and superiority of this method are verified. © 2023 Chinese Medical Journals Publishing House Co.Ltd. All rights reserved.
引用
收藏
页码:165 / 174
相关论文
共 50 条
  • [31] Nighttime Vehicle Detection Algorithm Based on Improved YOLOv8
    Huang, Qianqian
    Wei, Mingzhu
    Wang, Xinhua
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 447 - 452
  • [32] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214
  • [33] AMW-YOLOv8n: Road Scene Object Detection Based on an Improved YOLOv8
    Wu, Donghao
    Fang, Chao
    Zheng, Xiaogang
    Liu, Jue
    Wang, Shengchun
    Huang, Xinyu
    ELECTRONICS, 2024, 13 (20)
  • [34] YOLOv8-LMG: An Improved Bearing Defect Detection Algorithm Based on YOLOv8
    Liu, Minggao
    Zhang, Ming
    Chen, Xinlan
    Zheng, Chunting
    Wang, Haifeng
    PROCESSES, 2024, 12 (05)
  • [35] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [36] Bulk Damage Point Detection in Crystals Based on Improved YOLOv8
    Feng, Haojie
    Shi, Jinfang
    Qiu, Rong
    Zhou, Qiang
    Wang, Jianxin
    Guo, Decheng
    Wang, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (22)
  • [37] A wind turbine damage detection algorithm designed based on YOLOv8
    Liu, Lizhao
    Li, Pinrui
    Wang, Dahan
    Zhu, Shunzhi
    APPLIED SOFT COMPUTING, 2024, 154
  • [38] YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model
    Zeng, Jiayi
    Zhong, Han
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [39] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [40] Research on Pupil Center Localization Detection Algorithm with Improved YOLOv8
    Xue, Kejuan
    Wang, Jinsong
    Wang, Hao
    APPLIED SCIENCES-BASEL, 2024, 14 (15):