Improved Road Damage Detection Algorithm of YOLOv8

被引:7
|
作者
Li, Song [1 ]
Shi, Tao [2 ]
Jing, Fangke [1 ]
机构
[1] School of Electrical Engineering, North China University of Science and Technology, Hebei, Tangshan,063210, China
[2] School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin,300384, China
关键词
Deep learning - Digital arithmetic - Motor transportation - Parameter estimation - Roads and streets - Signal detection;
D O I
10.3778/j.issn.1002-8331.2306-0205
中图分类号
学科分类号
摘要
Road damage detection is an important task to ensure road safety and realize timely repair of road damage. Aiming at the problems of low detection efficiency, high cost and difficulty in applying to mobile terminal devices in existing Road Damage detection algorithms, a lightweight road damage detection algorithm YOLOV8-Road Damage (YOLOV8-RD)with improved YOLOv8 is proposed. First, combining the advantages of CNN and Transformer, a BOT module that can extract global and local feature information of road damage images is proposed to adapt to the large-span and elongated features of crack objects. Then, coordinate attention(CA)is introduced in the end of backbone network and neck network to embed the location information into the channel attention, strengthen the feature extraction ability, and suppress the interference of irrelevant features. In addition, C2fGhost module is used in YOLOv8 neck network to reduce floating point computation in feature channel fusion process, reduce the number of model parameters, and improve feature expression performance. The experimental results show that in RDD2022 data set and Road Damage data set, the improved algorithm is 2% and 3.7% higher than the original algorithm compared with mAP50, while the number of model parameters is only 2.8×106 and the computation amount is only 7.3×109, which are reduced by 6.7% and 8.5% respectively. The detection speed of the algorithm reaches 88 FPS, which can accurately detect the road damage target in real time. Compared with other mainstream target detection algorithms, the effectiveness and superiority of this method are verified. © 2023 Chinese Medical Journals Publishing House Co.Ltd. All rights reserved.
引用
收藏
页码:165 / 174
相关论文
共 50 条
  • [21] Research on improved YOLOv8 algorithm for insulator defect detection
    Zhang, Lin
    Li, Boqun
    Cui, Yang
    Lai, Yushan
    Gao, Jing
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (01)
  • [22] An Improved Liver Disease Detection Based on YOLOv8 Algorithm
    Huang, Junjie
    Li, Caihong
    Yan, Fengjun
    Guo, Yuanchun
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (07) : 1168 - 1179
  • [23] Improved Lightweight Military Aircraft Detection Algorithm of YOLOv8
    Liu, Li
    Zhang, Shuo
    Bai, Yu’ang
    Li, Yujian
    Zhang, Chuxia
    Computer Engineering and Applications, 2024, 60 (18) : 114 - 125
  • [24] An Improved YOLOv8 Algorithm for Rail Surface Defect Detection
    Wang, Yan
    Zhang, Kehua
    Wang, Ling
    Wu, Lintong
    IEEE ACCESS, 2024, 12 : 44984 - 44997
  • [25] Textile Defect Detection Algorithm Based on the Improved YOLOv8
    Song, Wenfei
    Lang, Du
    Zhang, Jiahui
    Zheng, Meilian
    Li, Xiaoming
    IEEE ACCESS, 2025, 13 : 11217 - 11231
  • [26] Fire and smoke detection algorithm based on improved YOLOv8
    Deng, Li
    Zhou, Jin
    Liu, Quanyi
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2025, 65 (04): : 681 - 689
  • [27] POTATO APPEARANCE DETECTION ALGORITHM BASED ON IMPROVED YOLOv8
    Zhang, Huan
    Liu, Zhen
    Yang, Ranbing
    Pan, Zhiguo
    Su, Zhaoming
    Li, Xinlin
    Liu, Zeyang
    Shi, Chuanmiao
    Wang, Shuai
    Wu, Hongzhu
    INMATEH-AGRICULTURAL ENGINEERING, 2024, 74 (03): : 864 - 874
  • [28] Improved YOLOv8 Algorithm for Water Surface Object Detection
    Wang, Jie
    Zhao, Hong
    SENSORS, 2024, 24 (15)
  • [29] Underwater Object Detection Algorithm Based on an Improved YOLOv8
    Zhang, Fubin
    Cao, Weiye
    Gao, Jian
    Liu, Shubing
    Li, Chenyang
    Song, Kun
    Wang, Hongwei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (11)
  • [30] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191