Personalized Machine Learning-Based Prediction of Wellbeing and Empathy in Healthcare Professionals

被引:0
|
作者
Nan, Jason [1 ,2 ]
Herbert, Matthew S. [3 ,4 ,5 ]
Purpura, Suzanna [1 ,3 ]
Henneken, Andrea N. [4 ,5 ]
Ramanathan, Dhakshin [1 ,3 ,4 ,5 ]
Mishra, Jyoti [1 ,3 ,5 ]
机构
[1] Univ Calif San Diego, Neural Engn & Translat Labs, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
[4] VA San Diego Med Ctr, Dept Mental Hlth, San Diego, CA 92161 USA
[5] VA San Diego Med Ctr, Ctr Excellence Stress & Mental Hlth, San Diego, CA 92161 USA
关键词
machine learning; healthcare professionals; empathy; wellbeing; N-of-1; model; EMA; DIETARY ASSESSMENT; SUICIDAL-IDEATION; BURNOUT; PHYSICIANS; ANXIETY; INTERVENTIONS; SATISFACTION; ASSOCIATION; COMPASSION; DEPRESSION;
D O I
10.3390/s24082640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Healthcare professionals are known to suffer from workplace stress and burnout, which can negatively affect their empathy for patients and quality of care. While existing research has identified factors associated with wellbeing and empathy in healthcare professionals, these efforts are typically focused on the group level, ignoring potentially important individual differences and implications for individualized intervention approaches. In the current study, we implemented N-of-1 personalized machine learning (PML) to predict wellbeing and empathy in healthcare professionals at the individual level, leveraging ecological momentary assessments (EMAs) and smartwatch wearable data. A total of 47 mood and lifestyle feature variables (relating to sleep, diet, exercise, and social connections) were collected daily for up to three months followed by applying eight supervised machine learning (ML) models in a PML pipeline to predict wellbeing and empathy separately. Predictive insight into the model architecture was obtained using Shapley statistics for each of the best-fit personalized models, ranking the importance of each feature for each participant. The best-fit model and top features varied across participants, with anxious mood (13/19) and depressed mood (10/19) being the top predictors in most models. Social connection was a top predictor for wellbeing in 9/12 participants but not for empathy models (1/7). Additionally, empathy and wellbeing were the top predictors of each other in 64% of cases. These findings highlight shared and individual features of wellbeing and empathy in healthcare professionals and suggest that a one-size-fits-all approach to addressing modifiable factors to improve wellbeing and empathy will likely be suboptimal. In the future, such personalized models may serve as actionable insights for healthcare professionals that lead to increased wellness and quality of patient care.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Machine learning-based prediction of FeNi nanoparticle magnetization
    Williamson, Federico
    Naciff, Nadhir
    Catania, Carlos
    dos Santos, Gonzalo
    Amigo, Nicolas
    Bringa, Eduardo M.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 5263 - 5276
  • [32] Machine Learning-Based Prediction of the Excitation Wavelength of Phosphors
    Sahu, Sunil K.
    Shrivastav, Anil
    Swamy, N. K.
    Dubey, Vikas
    Halwar, D. K.
    Kumar, M. Tanooj
    Rao, M. C.
    JOURNAL OF APPLIED SPECTROSCOPY, 2024, 91 (03) : 669 - 677
  • [33] Machine learning-based intrusion detection for SCADA systems in healthcare
    Tolgahan Öztürk
    Zeynep Turgut
    Gökçe Akgün
    Cemal Köse
    Network Modeling Analysis in Health Informatics and Bioinformatics, 2022, 11
  • [34] Machine Learning-Based Prediction of Antiferromagnetic Skyrmion Formation
    Saini, Shipra
    Shukla, Alok Kumar
    Nehete, Hemkant
    Bindal, Namita
    Kaushik, Brajesh Kumar
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (04) : 2774 - 2780
  • [35] Machine learning-based prediction models for postpartum hemorrhage
    Venkatesh, Kartik K.
    Strauss, Robert
    Grotegut, Chad
    Heine, Phillips
    Stamilio, David M.
    Menard, Kathryn
    Jelovsek, Eric
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2020, 222 (01) : S175 - S176
  • [36] Machine Learning-Based Prediction of the Martensite Start Temperature
    Wentzien, Marcel
    Koch, Marcel
    Friedrich, Thomas
    Ingber, Jerome
    Kempka, Henning
    Schmalzried, Dirk
    Kunert, Maik
    STEEL RESEARCH INTERNATIONAL, 2024, 95 (10)
  • [37] Machine Learning-based RSSI Prediction in Factory Environments
    Webber, Julian
    Suga, Norisato
    Ano, Susumu
    Jou, Yafei
    Mehbodniya, Abolfazl
    Higashimori, Toshihide
    Yano, Kazuto
    Suzuki, Yoshinori
    PROCEEDINGS OF 2019 25TH ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS (APCC), 2019, : 195 - 200
  • [38] Machine learning-based approaches for disease gene prediction
    Duc-Hau Le
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2020, 19 (5-6) : 350 - 363
  • [39] Machine Learning-based Seismic Prediction of Building Structures
    Liu, Shuai
    Peng, Hailiang
    Deng, Xiaolu
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON MACHINE INTELLIGENCE AND DIGITAL APPLICATIONS, MIDA2024, 2024, : 256 - 261
  • [40] Machine learning-based seawater concentration pathway prediction
    Hu, Fang
    Xu, Xingyong
    Liang, Jun
    Yang, Changguo
    Huang, Mingfang
    Su, Qiao
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 94