Personalized Machine Learning-Based Prediction of Wellbeing and Empathy in Healthcare Professionals

被引:0
|
作者
Nan, Jason [1 ,2 ]
Herbert, Matthew S. [3 ,4 ,5 ]
Purpura, Suzanna [1 ,3 ]
Henneken, Andrea N. [4 ,5 ]
Ramanathan, Dhakshin [1 ,3 ,4 ,5 ]
Mishra, Jyoti [1 ,3 ,5 ]
机构
[1] Univ Calif San Diego, Neural Engn & Translat Labs, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
[4] VA San Diego Med Ctr, Dept Mental Hlth, San Diego, CA 92161 USA
[5] VA San Diego Med Ctr, Ctr Excellence Stress & Mental Hlth, San Diego, CA 92161 USA
关键词
machine learning; healthcare professionals; empathy; wellbeing; N-of-1; model; EMA; DIETARY ASSESSMENT; SUICIDAL-IDEATION; BURNOUT; PHYSICIANS; ANXIETY; INTERVENTIONS; SATISFACTION; ASSOCIATION; COMPASSION; DEPRESSION;
D O I
10.3390/s24082640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Healthcare professionals are known to suffer from workplace stress and burnout, which can negatively affect their empathy for patients and quality of care. While existing research has identified factors associated with wellbeing and empathy in healthcare professionals, these efforts are typically focused on the group level, ignoring potentially important individual differences and implications for individualized intervention approaches. In the current study, we implemented N-of-1 personalized machine learning (PML) to predict wellbeing and empathy in healthcare professionals at the individual level, leveraging ecological momentary assessments (EMAs) and smartwatch wearable data. A total of 47 mood and lifestyle feature variables (relating to sleep, diet, exercise, and social connections) were collected daily for up to three months followed by applying eight supervised machine learning (ML) models in a PML pipeline to predict wellbeing and empathy separately. Predictive insight into the model architecture was obtained using Shapley statistics for each of the best-fit personalized models, ranking the importance of each feature for each participant. The best-fit model and top features varied across participants, with anxious mood (13/19) and depressed mood (10/19) being the top predictors in most models. Social connection was a top predictor for wellbeing in 9/12 participants but not for empathy models (1/7). Additionally, empathy and wellbeing were the top predictors of each other in 64% of cases. These findings highlight shared and individual features of wellbeing and empathy in healthcare professionals and suggest that a one-size-fits-all approach to addressing modifiable factors to improve wellbeing and empathy will likely be suboptimal. In the future, such personalized models may serve as actionable insights for healthcare professionals that lead to increased wellness and quality of patient care.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Machine Learning-based Fall Detection in Geriatric Healthcare Systems
    Ramachandra, Anita
    Adarsh, R.
    Pahwa, Piyush
    Anupama, K. R.
    2018 IEEE INTERNATIONAL CONFERENCE ON ADVANCED NETWORKS AND TELECOMMUNICATIONS SYSTEMS (ANTS), 2018,
  • [22] Machine learning-based intrusion detection for SCADA systems in healthcare
    Ozturk, Tolgahan
    Turgut, Zeynep
    Akgun, Gokce
    Kose, Cemal
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2022, 11 (01):
  • [23] Machine Learning-Based Intrusion Detection System For Healthcare Data
    Balyan, Amit Kumar
    Ahuja, Sachin
    Sharma, Sanjeev Kumar
    Lilhore, Umesh Kumar
    PROCEEDINGS OF 3RD IEEE CONFERENCE ON VLSI DEVICE, CIRCUIT AND SYSTEM (IEEE VLSI DCS 2022), 2022, : 290 - 294
  • [24] Machine learning-based weather prediction with radiosonde observations
    Gogen, Eralp
    Guney, Selda
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (04): : 2317 - 2328
  • [25] Machine Learning-Based Approach for Hardware Faults Prediction
    Khalil, Kasem
    Eldash, Omar
    Kumar, Ashok
    Bayoumi, Magdy
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2020, 67 (11) : 3880 - 3892
  • [26] Machine learning-based prediction of compound profiling matrices
    Perez, Raquel Rodriguez
    Bajorath, Jurgen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [27] Machine Learning-Based Academic Result Prediction System
    Bhushan, Megha
    Verma, Utkarsh
    Garg, Chetna
    Negi, Arun
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2024, 12 (01)
  • [28] Machine Learning-Based Link Prediction for Hotel Network
    Sevim, Yiğit
    Orman, Günce Keziban
    Yöndem, Meltem Turhan
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [29] Machine Learning-based Pin Accessibility Prediction and Application
    Fang, Shao-Yun
    2021 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2021,
  • [30] Machine Learning-based Corporate Socia Responsibility Prediction
    Teoh, T-T
    Heng, Q. K.
    Chia, J. J.
    Shie, J. M.
    Liaw, S. W.
    Yang, M.
    Nguwi, Y-Y
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 501 - 505