Personalized Machine Learning-Based Prediction of Wellbeing and Empathy in Healthcare Professionals

被引:0
|
作者
Nan, Jason [1 ,2 ]
Herbert, Matthew S. [3 ,4 ,5 ]
Purpura, Suzanna [1 ,3 ]
Henneken, Andrea N. [4 ,5 ]
Ramanathan, Dhakshin [1 ,3 ,4 ,5 ]
Mishra, Jyoti [1 ,3 ,5 ]
机构
[1] Univ Calif San Diego, Neural Engn & Translat Labs, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Dept Psychiat, La Jolla, CA 92093 USA
[4] VA San Diego Med Ctr, Dept Mental Hlth, San Diego, CA 92161 USA
[5] VA San Diego Med Ctr, Ctr Excellence Stress & Mental Hlth, San Diego, CA 92161 USA
关键词
machine learning; healthcare professionals; empathy; wellbeing; N-of-1; model; EMA; DIETARY ASSESSMENT; SUICIDAL-IDEATION; BURNOUT; PHYSICIANS; ANXIETY; INTERVENTIONS; SATISFACTION; ASSOCIATION; COMPASSION; DEPRESSION;
D O I
10.3390/s24082640
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Healthcare professionals are known to suffer from workplace stress and burnout, which can negatively affect their empathy for patients and quality of care. While existing research has identified factors associated with wellbeing and empathy in healthcare professionals, these efforts are typically focused on the group level, ignoring potentially important individual differences and implications for individualized intervention approaches. In the current study, we implemented N-of-1 personalized machine learning (PML) to predict wellbeing and empathy in healthcare professionals at the individual level, leveraging ecological momentary assessments (EMAs) and smartwatch wearable data. A total of 47 mood and lifestyle feature variables (relating to sleep, diet, exercise, and social connections) were collected daily for up to three months followed by applying eight supervised machine learning (ML) models in a PML pipeline to predict wellbeing and empathy separately. Predictive insight into the model architecture was obtained using Shapley statistics for each of the best-fit personalized models, ranking the importance of each feature for each participant. The best-fit model and top features varied across participants, with anxious mood (13/19) and depressed mood (10/19) being the top predictors in most models. Social connection was a top predictor for wellbeing in 9/12 participants but not for empathy models (1/7). Additionally, empathy and wellbeing were the top predictors of each other in 64% of cases. These findings highlight shared and individual features of wellbeing and empathy in healthcare professionals and suggest that a one-size-fits-all approach to addressing modifiable factors to improve wellbeing and empathy will likely be suboptimal. In the future, such personalized models may serve as actionable insights for healthcare professionals that lead to increased wellness and quality of patient care.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Interpretability of machine learning-based prediction models in healthcare
    Stiglic, Gregor
    Kocbek, Primoz
    Fijacko, Nino
    Zitnik, Marinka
    Verbert, Katrien
    Cilar, Leona
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (05)
  • [2] MACHINE LEARNING-BASED HEART DISEASE PREDICTION: A STUDY FOR HOME PERSONALIZED CARE
    Sahoo, Goutam Kumar
    Kanike, Keerthana
    Das, Santos Kumar
    Singh, Poonam
    2022 IEEE 32ND INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2022,
  • [3] Machine Learning-Based Rapid Prediction of Torsional Performance of Personalized Peripheral Artery Stent
    Shen, Xiang
    Chen, Jiahao
    He, Zewen
    Xu, Yue
    Liu, Qiang
    Liang, Hongyu
    Yan, Hengfeng
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2025, 41 (03)
  • [4] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [5] DEEP LEARNING-BASED PERSONALIZED SURVIVAL PREDICTION FOR MEDULLOBLASTOMA
    Stefan, Sabina
    Northcott, Paul
    Hovestadt, Volker
    NEURO-ONCOLOGY, 2023, 25
  • [6] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [7] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [8] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [9] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [10] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42