Quantitative structure-activity relationship (QSAR) modeling is a powerful tool for drug discovery, yet the lack of interpretability of commonly used QSAR models hinders their application in molecular design. We propose a similarity-based regression framework, topological regression (TR), that offers a statistically grounded, computationally fast, and interpretable technique to predict drug responses. We compare the predictive performance of TR on 530 ChEMBL human target activity datasets against the predictive performance of deep-learning-based QSAR models. Our results suggest that our sparse TR model can achieve equal, if not better, performance than the deep learning-based QSAR models and provide better intuitive interpretation by extracting an approximate isometry between the chemical space of the drugs and their activity space. Quantitative structure-activity relationships (QSAR) models are widely used in drug discovery, but have limitations in their interpretability and accuracy near activity cliffs. Here the authors use a topological regression framework to increase QSAR interpretability and efficiency.
机构:
Univ Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, FranceUniv Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
Marcou, Gilles
Delouis, Grace
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, FranceUniv Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
Delouis, Grace
Mokshyna, Olena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
Natl Acad Sci Ukraine, Physicochem Inst, 86 Lustdorfskaja Doroga, UA-65080 Odessa, UkraineUniv Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
Mokshyna, Olena
Horvath, Dragos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, FranceUniv Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
Horvath, Dragos
Lachiche, Nicolas
论文数: 0引用数: 0
h-index: 0
机构:
ICube UMR 7357, 300 Bd Sebastien Brant CS 10413, F-67412 Illkirch Graffenstaden, FranceUniv Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
Lachiche, Nicolas
Varnek, Alexandre
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, FranceUniv Strasbourg, Fac Chim, 4 Rue Blaise Pascal,BP 20296, F-67008 Strasbourg, France
机构:Univ N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USA
Zhu, Hao
Martin, Todd M.
论文数: 0引用数: 0
h-index: 0
机构:
US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USAUniv N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USA
Martin, Todd M.
Ye, Lin
论文数: 0引用数: 0
h-index: 0
机构:Univ N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USA
Ye, Lin
Sedykh, Alexander
论文数: 0引用数: 0
h-index: 0
机构:Univ N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USA
Sedykh, Alexander
Young, Douglas M.
论文数: 0引用数: 0
h-index: 0
机构:
US EPA, Sustainable Technol Div, Natl Risk Management Res Lab, Off Res & Dev, Cincinnati, OH 45268 USAUniv N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USA
Young, Douglas M.
Tropsha, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Univ N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USAUniv N Carolina, Sch Pharm, Div Med Chem & Nat Prod,Lab Mol Modeling, Carolina Environm Bioinformat Res Ctr, Chapel Hill, NC 27599 USA