Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling

被引:1
|
作者
Zhang, Ruibo [1 ]
Nolte, Daniel [1 ]
Sanchez-Villalobos, Cesar [1 ]
Ghosh, Souparno [2 ]
Pal, Ranadip [1 ]
机构
[1] Texas Tech Univ, Dept Elect & Comp Engn, Lubbock, TX 79409 USA
[2] Univ Nebraska Lincoln, Dept Stat, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
PREDICTION; CLASSIFICATION; VISUALIZATION; GRAPHS;
D O I
10.1038/s41467-024-49372-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantitative structure-activity relationship (QSAR) modeling is a powerful tool for drug discovery, yet the lack of interpretability of commonly used QSAR models hinders their application in molecular design. We propose a similarity-based regression framework, topological regression (TR), that offers a statistically grounded, computationally fast, and interpretable technique to predict drug responses. We compare the predictive performance of TR on 530 ChEMBL human target activity datasets against the predictive performance of deep-learning-based QSAR models. Our results suggest that our sparse TR model can achieve equal, if not better, performance than the deep learning-based QSAR models and provide better intuitive interpretation by extracting an approximate isometry between the chemical space of the drugs and their activity space. Quantitative structure-activity relationships (QSAR) models are widely used in drug discovery, but have limitations in their interpretability and accuracy near activity cliffs. Here the authors use a topological regression framework to increase QSAR interpretability and efficiency.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Generalizability Improvement of Interpretable Symbolic Regression Models for Quantitative Structure-Activity Relationships
    Shirasawa, Raku
    Takaki, Katsushi
    Miyao, Tomoyuki
    ACS OMEGA, 2024, 9 (08): : 9463 - 9474
  • [2] Conformal Regression for Quantitative Structure-Activity Relationship Modeling-Quantifying Prediction Uncertainty
    Svensson, Fredrik
    Aniceto, Natalia
    Norinder, Ulf
    Cortes-Ciriano, Isidro
    Spjuth, Ola
    Carlsson, Lars
    Bender, Andreas
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (05) : 1132 - 1140
  • [3] Quantitative structure-activity relationship modeling of biofiltration removal
    Aizpuru, A
    Malhautier, L
    Fanlo, JL
    JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 2002, 128 (10): : 953 - 959
  • [4] A segmented principal component analysis-regression approach to quantitative structure-activity relationship modeling
    Hemmateenejad, Bahram
    Elyasi, Maryam
    ANALYTICA CHIMICA ACTA, 2009, 646 (1-2) : 30 - 38
  • [5] Molecular Modeling: Origin, Fundamental Concepts and Applications Using Structure-Activity Relationship and Quantitative Structure-Activity Relationship
    Rodrigues dos Santos, Cleydson Breno
    Lobato, Cleison Carvalho
    Costa de Sousa, Marcos Alexandre
    da Cruz Macedo, Williams Jorge
    Tavares Carvalho, Jose Carlos
    REVIEWS IN THEORETICAL SCIENCE, 2014, 2 (02) : 91 - 115
  • [6] Quantitative structure-activity relationship modeling of dermatomyositis activity of drug chemicals
    Kamenska, Verginia
    Dourmishev, Lyubomir
    Dourmishev, Assen
    Vasilev, Rusi
    Mekenyan, Ovanes
    ARZNEIMITTEL-FORSCHUNG-DRUG RESEARCH, 2006, 56 (12): : 856 - 865
  • [7] Combining chemodescriptors and biodescriptors in quantitative structure-activity relationship modeling
    Hawkins, DM
    Basak, SC
    Kraker, J
    Geiss, KT
    Witzmann, FA
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2006, 46 (01) : 9 - 16
  • [8] Interpretable correlation descriptors for quantitative structure-activity relationships
    Hirst, Jonathan D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [9] Quantitative Structure-Activity Relationship Modeling of Kinase Selectivity Profiles
    Kothiwale, Sandeepkumar
    Borza, Corina
    Pozzi, Ambra
    Meiler, Jens
    MOLECULES, 2017, 22 (09)
  • [10] Interpretable correlation descriptors for quantitative structure-activity relationships
    Spowage, Benson M.
    Bruce, Craig L.
    Hirst, Jonathan D.
    JOURNAL OF CHEMINFORMATICS, 2009, 1