DTPP-DFL: A Dropout-Tolerated Privacy-Preserving Decentralized Federated Learning Framework

被引:0
|
作者
Chen, Tao [1 ]
Wang, Xiao-Fen [1 ]
Dai, Hong-Ning [2 ]
Yang, Hao-Miao [1 ]
Zhou, Rang [3 ]
Zhang, Xiao-Song [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Hong Kong Baptist Univ, Hong Kong, Peoples R China
[3] Chengdu Univ Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Privacy-Preserving; Dropout-Tolerated; Decentralized; Federated Learning; Blockchain;
D O I
10.1109/GLOBECOM54140.2023.10437934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) enables participants to collaboratively train a global model by sharing their gradients without the need for uploading privacy-sensitive data. Despite certain privacy preservation of FL, local gradients in plaintext may reveal data privacy when gradient-leakage attacks are launched. To further protect local gradients, privacy-preserving FL schemes have been proposed. However, these existing schemes that require a fully trusted central server are vulnerable to a single point of failure and malicious attacks. Although more robust privacy-preserving decentralized FL schemes have recently been proposed on multiple servers, they will fail to aggregate the local gradients with message transmission errors or data packet dropping out due to the instability of the communication network. To address these challenges, we propose a novel privacy-preserving decentralized FL scheme system based on the blockchain and a modified identity-based homomorphic broadcast encryption algorithm. This scheme achieves both privacy protection and error/dropout tolerance. Security analysis shows that the proposed scheme can protect the privacy of the local gradients against both internal and external adversaries, and protect the privacy of the global gradients against external adversaries. Moreover, it ensures the correctness of local gradients' aggregation even when transmission error or data packet dropout happens. Extensive experiments demonstrate that the proposed scheme guarantees model accuracy and achieves performance efficiency.
引用
收藏
页码:2554 / 2559
页数:6
相关论文
共 50 条
  • [41] FAME: A Federated Adversarial Learning Framework for Privacy-Preserving MRI Reconstruction
    Ahmed, Shahzad
    Feng, Jinchao
    Ferzund, Javed
    Yaqub, Muhammad
    Ali, Muhammad Usman
    Manan, Malik Abdul
    Raheem, Abdul
    APPLIED MAGNETIC RESONANCE, 2025,
  • [42] A Federated Deep Learning Framework for Privacy-Preserving Consumer Electronics Recommendations
    Wu, Jintao
    Zhang, Jingyi
    Bilal, Muhammad
    Han, Feng
    Victor, Nancy
    Xu, Xiaolong
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2628 - 2638
  • [43] SECUREASTRAEA: A Self-balancing Privacy-preserving Federated Learning Framework
    Zhou, Dehua
    Yu, Yingwei
    Wu, Di
    Gan, Qingqing
    Chen, Zexiao
    Xu, Botong
    2022 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS (DASC/PICOM/CBDCOM/CYBERSCITECH), 2022, : 638 - 645
  • [44] A Privacy-Preserving Collaborative Federated Learning Framework for Detecting Retinal Diseases
    Gulati, Seema
    Guleria, Kalpna
    Goyal, Nitin
    Alzubi, Ahmad Ali
    Castilla, Angel Kuc
    IEEE ACCESS, 2024, 12 : 170176 - 170203
  • [45] FlexSplit: A Configurable, Privacy-Preserving Federated-Split Learning Framework
    Wu, Tiantong
    Bandara, H. M. N. Dilum
    Yeoh, Phee Lep
    Thilakarathna, Kanchana
    2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS, 2023, : 116 - 121
  • [46] Personalized Privacy-Preserving Framework for Cross-Silo Federated Learning
    Tran, Van-Tuan
    Pham, Huy-Hieu
    Wong, Kok-Seng
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2024, 12 (04) : 1014 - 1024
  • [47] An Efficient Federated Learning Framework for Privacy-Preserving Data Aggregation in IoT
    Shi, Rongquan
    Wei, Lifei
    Zhang, Lei
    2023 20TH ANNUAL INTERNATIONAL CONFERENCE ON PRIVACY, SECURITY AND TRUST, PST, 2023, : 385 - 391
  • [48] A flexible and privacy-preserving federated learning framework based on logistic regression
    Wang, Junkai
    Xiong, Ling
    Liu, Zhicai
    Wang, Huan
    Li, Chunlin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [49] FLCP: federated learning framework with communication-efficient and privacy-preserving
    Yang, Wei
    Yang, Yuan
    Xi, Yingjie
    Zhang, Hailong
    Xiang, Wei
    APPLIED INTELLIGENCE, 2024, 54 (9-10) : 6816 - 6835
  • [50] Bppfl: a blockchain-based framework for privacy-preserving federated learning
    Asad, Muhammad
    Otoum, Safa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):