DTPP-DFL: A Dropout-Tolerated Privacy-Preserving Decentralized Federated Learning Framework

被引:0
|
作者
Chen, Tao [1 ]
Wang, Xiao-Fen [1 ]
Dai, Hong-Ning [2 ]
Yang, Hao-Miao [1 ]
Zhou, Rang [3 ]
Zhang, Xiao-Song [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Hong Kong Baptist Univ, Hong Kong, Peoples R China
[3] Chengdu Univ Technol, Chengdu, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Privacy-Preserving; Dropout-Tolerated; Decentralized; Federated Learning; Blockchain;
D O I
10.1109/GLOBECOM54140.2023.10437934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Federated Learning (FL) enables participants to collaboratively train a global model by sharing their gradients without the need for uploading privacy-sensitive data. Despite certain privacy preservation of FL, local gradients in plaintext may reveal data privacy when gradient-leakage attacks are launched. To further protect local gradients, privacy-preserving FL schemes have been proposed. However, these existing schemes that require a fully trusted central server are vulnerable to a single point of failure and malicious attacks. Although more robust privacy-preserving decentralized FL schemes have recently been proposed on multiple servers, they will fail to aggregate the local gradients with message transmission errors or data packet dropping out due to the instability of the communication network. To address these challenges, we propose a novel privacy-preserving decentralized FL scheme system based on the blockchain and a modified identity-based homomorphic broadcast encryption algorithm. This scheme achieves both privacy protection and error/dropout tolerance. Security analysis shows that the proposed scheme can protect the privacy of the local gradients against both internal and external adversaries, and protect the privacy of the global gradients against external adversaries. Moreover, it ensures the correctness of local gradients' aggregation even when transmission error or data packet dropout happens. Extensive experiments demonstrate that the proposed scheme guarantees model accuracy and achieves performance efficiency.
引用
收藏
页码:2554 / 2559
页数:6
相关论文
共 50 条
  • [31] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [32] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [33] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [34] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [35] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [36] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [37] FedSteg: Coverless Steganography-Based Privacy-Preserving Decentralized Federated Learning
    Xu, Mengfan
    Lin, Yaguang
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (08) : 1345 - 1359
  • [38] R-PPDFL: A Robust and Privacy-Preserving Decentralized Federated Learning System
    Chen, Tao
    Wang, Xiaofen
    Dai, Hong-Ning
    INFORMATION SECURITY AND PRIVACY, PT III, ACISP 2024, 2024, 14897 : 158 - 173
  • [39] DeTrust-FL: Privacy-Preserving Federated Learning in Decentralized Trust Setting
    Xu, Runhua
    Baracaldo, Nathalie
    Zhou, Yi
    Anwar, Ali
    Kadhe, Swanand
    Ludwig, Heiko
    2022 IEEE 15TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (IEEE CLOUD 2022), 2022, : 417 - 426
  • [40] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934