Wavelet-Based Density Estimation for Persistent Homology

被引:0
|
作者
Haberle, Konstantin [1 ,2 ]
Bravi, Barbara [1 ]
Monod, Anthea [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Swiss Fed Inst Technol, Chair Math Informat Sci, CH-8092 Zurich, Switzerland
来源
关键词
nonparametric density estimation; persistent homology; persistence measures; wavelets; CONVERGENCE; IMAGE;
D O I
10.1137/23M1573811
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Persistent homology is a central methodology in topological data analysis that has been successfully implemented in many fields and is becoming increasingly popular and relevant. The output of persistent homology is a persistence diagram ---a multiset of points supported on the upper halfplane ---that is often used as a statistical summary of the topological features of data. In this paper, we study the random nature of persistent homology and estimate the density of expected persistence diagrams from observations using wavelets; we show that our wavelet -based estimator is optimal. Furthermore, we propose an estimator that offers a sparse representation of the expected persistence diagram that achieves near -optimality. We demonstrate the utility of our contributions in a machine learning task in the context of dynamical systems.
引用
收藏
页码:347 / 376
页数:30
相关论文
共 50 条
  • [31] BayWave: BAYesian WAVElet-based image estimation
    Pande, Amit
    Mittal, Sparsh
    INTERNATIONAL JOURNAL OF SIGNAL AND IMAGING SYSTEMS ENGINEERING, 2009, 2 (04) : 155 - 162
  • [32] Wavelet-Based Estimation of Generalized Discriminant Functions
    Michel H. Montoril
    Woojin Chang
    Brani Vidakovic
    Sankhya B, 2019, 81 : 318 - 349
  • [33] Wavelet-Based Estimation of Generalized Discriminant Functions
    Montoril, Michel H.
    Chang, Woojin
    Vidakovic, Brani
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02): : 318 - 349
  • [34] Wavelet-based estimation for multivariate stable laws
    Shokripour, Mona
    Aminghafari, Mina
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (08) : 1584 - 1600
  • [35] Wavelet-based estimation with multiple sampling rates
    Hall, P
    Penev, S
    ANNALS OF STATISTICS, 2004, 32 (05): : 1933 - 1956
  • [36] Automatic tire pressure fault monitor using wavelet-based probability density estimation
    Li, L
    Wang, FY
    Zhou, QZ
    Shan, GL
    IEEE IV2003: INTELLIGENT VEHICLES SYMPOSIUM, PROCEEDINGS, 2003, : 80 - 84
  • [37] Wavelet-Based Semiparametric Estimation of Ocean Surface Temperature
    Ruiz-Medina, M. D.
    Frias, M. P.
    MATHEMATICAL GEOSCIENCES, 2015, 47 (02) : 149 - 171
  • [38] Nonlinear wavelet-based estimation to spectral density for stationary non-Gaussian linear processes
    Li, Linyuan
    Zhang, Biao
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 60 : 176 - 204
  • [39] Wavelet-based method for nonparametric estimation of HMM's
    Couvreur, L
    Couvreur, C
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (02) : 25 - 27
  • [40] A priori size estimation of wavelet-based Galerkin matrices
    Oberschmidt, G
    Schneider, G
    Jacob, AF
    2000 25TH INTERNATIONAL CONFERENCE ON INFRARED AND MILLIMETER WAVES CONFERENCE DIGEST, 2000, : 241 - 242