Wavelet-Based Density Estimation for Persistent Homology

被引:0
|
作者
Haberle, Konstantin [1 ,2 ]
Bravi, Barbara [1 ]
Monod, Anthea [1 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Swiss Fed Inst Technol, Chair Math Informat Sci, CH-8092 Zurich, Switzerland
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2024年 / 12卷 / 02期
关键词
nonparametric density estimation; persistent homology; persistence measures; wavelets; CONVERGENCE; IMAGE;
D O I
10.1137/23M1573811
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Persistent homology is a central methodology in topological data analysis that has been successfully implemented in many fields and is becoming increasingly popular and relevant. The output of persistent homology is a persistence diagram ---a multiset of points supported on the upper halfplane ---that is often used as a statistical summary of the topological features of data. In this paper, we study the random nature of persistent homology and estimate the density of expected persistence diagrams from observations using wavelets; we show that our wavelet -based estimator is optimal. Furthermore, we propose an estimator that offers a sparse representation of the expected persistence diagram that achieves near -optimality. We demonstrate the utility of our contributions in a machine learning task in the context of dynamical systems.
引用
收藏
页码:347 / 376
页数:30
相关论文
共 50 条
  • [21] Wavelet-Based Estimation for Univariate Stable Laws
    Anestis Antoniadis
    Andrey Feuerverger
    Paulo Gonçalves
    Annals of the Institute of Statistical Mathematics, 2006, 58 : 779 - 807
  • [22] Wavelet-based estimation in a semiparametric regression model
    de Dieu Nkou, Emmanuel
    Nkiet, Guy Martial
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2022, 20 (02)
  • [23] An efficient wavelet-based motion estimation algorithm
    Bae, JW
    Lee, SH
    Yoo, JS
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2005, E88D (01): : 143 - 149
  • [24] An efficient wavelet-based motion estimation algorithm
    Bae, JW
    Lee, SH
    Yoo, JS
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXVII, PTS 1AND 2, 2004, 5558 : 890 - 900
  • [25] Wavelet-based estimation for univariate stable laws
    Antoniadis, Anestis
    Feuerverger, Andrey
    Goncalves, Paulo
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2006, 58 (04) : 779 - 807
  • [26] Wavelet-based estimation of generalized fractional process
    Gonzaga, A.
    Kawanaka, A.
    METHODS OF INFORMATION IN MEDICINE, 2007, 46 (02) : 117 - 120
  • [27] Model selection for wavelet-based signal estimation
    Cherkassky, V
    Shao, XH
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 843 - 848
  • [28] Wavelet-based estimation of hemodynamic response function
    Srikanth, R
    Muralishankar, R
    Ramakrishnan, AG
    NEURAL INFORMATION PROCESSING, 2004, 3316 : 1285 - 1291
  • [29] Wavelet-based correlation measurement and shift estimation
    Coates, MJ
    Fitzgerald, WJ
    SIGNAL ANALYSIS & PREDICTION I, 1997, : 238 - 241
  • [30] Wavelet-based cost estimation for spatial queries
    Wang, M
    Vitter, JS
    Lim, L
    Padmanabhan, S
    ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2001, 2121 : 175 - 193