INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING

被引:0
|
作者
Parveen, S. Thilsath [1 ]
Balamurugan, B. J. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Div Math, Chennai Campus, Chennai 600127, Tamil Nadu, India
关键词
Graphs; independent domination; independent dominating set; independent domination number; vertex switching;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration.
引用
收藏
页码:508 / 519
页数:12
相关论文
共 50 条
  • [41] Vertex-edge domination in graphs
    Boutrig, Razika
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    AEQUATIONES MATHEMATICAE, 2016, 90 (02) : 355 - 366
  • [42] VERTEX DOMINATION-CRITICAL GRAPHS
    FULMAN, J
    HANSON, D
    MACGILLIVRAY, G
    NETWORKS, 1995, 25 (02) : 41 - 43
  • [43] Vertex-edge domination in graphs
    Razika Boutrig
    Mustapha Chellali
    Teresa W. Haynes
    Stephen T. Hedetniemi
    Aequationes mathematicae, 2016, 90 : 355 - 366
  • [44] Vertex domination of generalized Petersen graphs
    Ebrahimi, B. Javad
    Jahanbakht, Nafiseh
    Mahmoodian, E. S.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4355 - 4361
  • [45] Vertex-edge domination in graphs
    Paweł Żyliński
    Aequationes mathematicae, 2019, 93 : 735 - 742
  • [46] Paired Domination Vertex Critical Graphs
    Xinmin Hou
    Michelle Edwards
    Graphs and Combinatorics, 2008, 24 : 453 - 459
  • [47] Vertex-edge domination in graphs
    Zylinski, Pawel
    AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 735 - 742
  • [48] Paired Domination Vertex Critical Graphs
    Hou, Xinmin
    Edwards, Michelle
    GRAPHS AND COMBINATORICS, 2008, 24 (05) : 453 - 459
  • [49] Trees with independent Roman domination number twice the independent domination number
    Chellali, Mustapha
    Rad, Nader Jafari
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [50] Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
    Bermudo, Sergio
    Dettlaff, Magda
    Lemanska, Magdalena
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 153 - 163