INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING

被引:0
|
作者
Parveen, S. Thilsath [1 ]
Balamurugan, B. J. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Div Math, Chennai Campus, Chennai 600127, Tamil Nadu, India
关键词
Graphs; independent domination; independent dominating set; independent domination number; vertex switching;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration.
引用
收藏
页码:508 / 519
页数:12
相关论文
共 50 条
  • [31] PLITHOGENIC VERTEX DOMINATION NUMBER
    Bharathi, T.
    Leo, S.
    Mohan, Jeba Sherlin
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 625 - 634
  • [32] On Independent Domination Number of Indubala Product of Some Families of Graphs
    Anandhababu, D.
    Parvathi, N.
    11TH NATIONAL CONFERENCE ON MATHEMATICAL TECHNIQUES AND APPLICATIONS, 2019, 2112
  • [33] On the Total Outer k-Independent Domination Number of Graphs
    Cabrera-Martinez, Abel
    Carlos Hernandez-Gomez, Juan
    Parra-Inza, Ernesto
    Sigarreta Almira, Jose Maria
    MATHEMATICS, 2020, 8 (02)
  • [34] Triangle-free graphs with large independent domination number
    Shiu, Wai Chee
    Chen, Xue-gang
    Chan, Wai Hong
    DISCRETE OPTIMIZATION, 2010, 7 (1-2) : 86 - 92
  • [35] The independent domination number of maximal triangle-free graphs
    Wang, Changping
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 42 : 129 - 136
  • [36] STRONG DOMINATION NUMBER OF HAJOS SUM AND VERTEX-SUM OF TWO GRAPHS
    Ghanbari, Nima
    Alikhani, Saeid
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (03): : 469 - 479
  • [37] An upper bound on the domination number of n-vertex connected cubic graphs
    Kostochka, A. V.
    Stodolsky, B. Y.
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1142 - 1162
  • [38] The outer-connected vertex edge domination number in Cartesian product graphs
    Akwu, A. D.
    Oyewumi, O.
    Ajayi, D. O. A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1275 - 1287
  • [39] DOMINATION AND INDEPENDENT DOMINATION NUMBERS OF GRAPHS
    SEIFTER, N
    ARS COMBINATORIA, 1994, 38 : 119 - 128
  • [40] Vertex covers and secure domination in graphs
    Burger, Alewyn P.
    Henning, Michael A.
    van Vuuren, Jan H.
    QUAESTIONES MATHEMATICAE, 2008, 31 (02) : 163 - 171