Picard-type theorem and the solutions of certain ODE and PDE

被引:0
|
作者
Goutam Haldar [1 ]
Molla Basir Ahamed [2 ]
机构
[1] Malda College,Department of Mathematics
[2] Ghani Khan Choudhury Institute of Engineering and Technology,Department of Mathematics
[3] Jadavpur University,Department of Mathematics
关键词
Picard’s theorem; Meromorphic functions; Total derivative; Entire solutions; Differential monomial of the total derivatives; Several complex variables; Primary 32H25; Secondary 39B32;
D O I
10.1007/s40627-024-00142-0
中图分类号
学科分类号
摘要
Picard’s theorem is among the most striking results in complex analysis and plays a decisive role in the development of the theory of entire and meromorphic functions. In this paper, we give an equivalence between Picard’s theorem and entire solutions of (i) difference equation Δηf+a(z)P(f)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \Delta _{\eta }f+a(z)P(f)=0 $$\end{document} in C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {C}} $$\end{document} and (ii) differential equation Dkf+h(z)g(f(z))=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D^kf+h(z)g(f(z))=0 $$\end{document} in terms of total derivatives in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb {C}}^n $$\end{document}. We prove two Picard-type theorems that generalize the results of Lu (Kodai Math J 26:221–229, 2003). In addition, examples have been exhibited to show that certain assumptions in the main result cannot be improved.
引用
收藏
相关论文
共 50 条
  • [31] LOCAL NORMALITY OF A MEROMORPHIC FUNCTION AND A PICARD TYPE THEOREM
    FUJIIE, T
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1986, 26 (01): : 95 - 99
  • [32] Quasiconformal immersions of Riemannian manifolds and a Picard type theorem
    Zorich, VA
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2000, 34 (03) : 188 - 196
  • [33] A NEW PICARD TYPE THEOREM CONCERNING ELLIPTIC FUNCTIONS
    Chen, Qiaoyu
    Pang, Xuecheng
    Yang, Pai
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2015, 40 (01) : 17 - 30
  • [34] Asymptotic behavior of solutions of an ODE-PDE hybrid competition system
    Doumate, Jonas T.
    Salako, Rachidi B.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 334 : 216 - 255
  • [35] Picard type theorems concerning certain small functions
    Pai Yang
    Lei Qiao
    Acta Mathematica Sinica, English Series, 2017, 33 : 1275 - 1286
  • [36] Picard Type Theorems Concerning Certain Small Functions
    Pai YANG
    Lei QIAO
    Acta Mathematica Sinica,English Series, 2017, (09) : 1275 - 1286
  • [37] Quasiconformal immersions of Riemannian manifolds and a picard type theorem
    V. A. Zorich
    Functional Analysis and Its Applications, 2000, 34 : 188 - 196
  • [38] Picard Type Theorems Concerning Certain Small Functions
    Pai YANG
    Lei QIAO
    ActaMathematicaSinica, 2017, 33 (09) : 1275 - 1286
  • [39] Picard Type Theorems Concerning Certain Small Functions
    Yang, Pai
    Qiao, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (09) : 1275 - 1286
  • [40] Characterization of PDE Reducible to ODE under a Certain Homogeneity and Applications to Singular Cauchy Problems
    Watanabe, Takuya
    Urabe, Jiichiroh
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2013, 56 (02): : 225 - 247