Picard’s theorem;
Meromorphic functions;
Total derivative;
Entire solutions;
Differential monomial of the total derivatives;
Several complex variables;
Primary 32H25;
Secondary 39B32;
D O I:
10.1007/s40627-024-00142-0
中图分类号:
学科分类号:
摘要:
Picard’s theorem is among the most striking results in complex analysis and plays a decisive role in the development of the theory of entire and meromorphic functions. In this paper, we give an equivalence between Picard’s theorem and entire solutions of (i) difference equation Δηf+a(z)P(f)=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Delta _{\eta }f+a(z)P(f)=0 $$\end{document} in C\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb {C}} $$\end{document} and (ii) differential equation Dkf+h(z)g(f(z))=0\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ D^kf+h(z)g(f(z))=0 $$\end{document} in terms of total derivatives in Cn\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ {\mathbb {C}}^n $$\end{document}. We prove two Picard-type theorems that generalize the results of Lu (Kodai Math J 26:221–229, 2003). In addition, examples have been exhibited to show that certain assumptions in the main result cannot be improved.
机构:
Matrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov St., IrkutskMatrosov Institute for System Dynamics and Control Theory SB RAS, 134, Lermontov St., Irkutsk