Limit Cycles in a Class of Planar Discontinuous Piecewise Quadratic Differential Systems with a Non-regular Line of Discontinuity (II)

被引:1
|
作者
He, Dongping [1 ]
Llibre, Jaume [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Sichuan, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matematiques, Barcelona 08193, Spain
基金
欧洲研究理事会;
关键词
Limit cycle; discontinuous piecewise polynomial system; quadratic uniform isochronous center; non-regular line of discontinuity; averaging theory; Chebyshev theory; HAMILTONIAN-SYSTEMS; ISOCHRONOUS CENTERS; NUMBER; BIFURCATIONS; PERTURBATIONS;
D O I
10.1007/s00009-024-02714-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous work, we have studied the limit cycles for a class of discontinuous piecewise quadratic polynomial differential systems with a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle alpha=pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \pi /2$$\end{document}. The unperturbed system is the quadratic uniform isochronous center x(center dot)=-y+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x} = -y + x y$$\end{document}, y(center dot)=x+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{y} = x + y<^>2$$\end{document} with a family of periodic orbits surrounding the origin. In this paper, we continue to investigate this kind of piecewise differential systems, but now the angle between the two rays is alpha is an element of(0,pi/2)boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2)\cup [3\pi /2,2\pi )$$\end{document}. Using the Chebyshev theory, we prove that the maximum number of hyperbolic limit cycles that can bifurcate from these periodic orbits using the averaging theory of first order is exactly 8 for alpha is an element of(0,pi/2)boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2)\cup [3\pi /2,2\pi )$$\end{document}. Together with our previous work, which concerns on the case of alpha=pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pi /2$$\end{document}, we can conclude that using the averaging theory of first order the maximum number of hyperbolic limit cycles is exactly 8, when this quadratic center is perturbed inside the above-mentioned classes separated by a non-regular line of discontinuity with alpha is an element of(0,pi/2]boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2]\cup [3\pi /2,2\pi )$$\end{document}.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Differential Systems
    Gui Lin Ji
    Chang Jian Liu
    Peng Heng Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 591 - 611
  • [42] Bifurcation of Limit Cycles for a Perturbed Piecewise Quadratic Differential Systems
    Ji, Gui Lin
    Liu, Chang Jian
    Li, Peng Heng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (03) : 591 - 611
  • [43] Limit Cycles in a Family of Planar Piecewise Linear Differential Systems with a Nonregular Separation Line
    Huan, Song-Mei
    Yang, Xiao-Song
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (08):
  • [44] Planar systems of piecewise linear differential equations with a line of discontinuity
    Giannakopoulos, F
    Pliete, K
    NONLINEARITY, 2001, 14 (06) : 1611 - 1632
  • [45] Limit cycles of a class of discontinuous piecewise differential systems in R3 separated by cylinders
    Sellami, Halla
    Benterki, Rebiha
    Baymout, Louiza
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [46] Limit Cycles in a Class of Continuous-Discontinuous Piecewise Linear Differential Systems with Three Zones
    Berbache, Aziza
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (15):
  • [47] Limit cycles for discontinuous quadratic differential systems with two zones
    Llibre, Jaume
    Mereu, Ana C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 413 (02) : 763 - 775
  • [48] Four Limit Cycles of Discontinuous Piecewise Differential Systems with Nilpotent Saddles Separated by a Straight Line
    Imane Benabdallah
    Rebiha Benterki
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [49] Four Limit Cycles of Discontinuous Piecewise Differential Systems with Nilpotent Saddles Separated by a Straight Line
    Benabdallah, Imane
    Benterki, Rebiha
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [50] Limit Cycles of a Class of Discontinuous Planar Piecewise Linear Systems with Three Regions of Y-Type
    Qianqian Zhao
    Jiang Yu
    Qualitative Theory of Dynamical Systems, 2019, 18 : 1031 - 1054