Limit Cycles in a Class of Planar Discontinuous Piecewise Quadratic Differential Systems with a Non-regular Line of Discontinuity (II)

被引:1
|
作者
He, Dongping [1 ]
Llibre, Jaume [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Sichuan, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matematiques, Barcelona 08193, Spain
基金
欧洲研究理事会;
关键词
Limit cycle; discontinuous piecewise polynomial system; quadratic uniform isochronous center; non-regular line of discontinuity; averaging theory; Chebyshev theory; HAMILTONIAN-SYSTEMS; ISOCHRONOUS CENTERS; NUMBER; BIFURCATIONS; PERTURBATIONS;
D O I
10.1007/s00009-024-02714-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous work, we have studied the limit cycles for a class of discontinuous piecewise quadratic polynomial differential systems with a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle alpha=pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \pi /2$$\end{document}. The unperturbed system is the quadratic uniform isochronous center x(center dot)=-y+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x} = -y + x y$$\end{document}, y(center dot)=x+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{y} = x + y<^>2$$\end{document} with a family of periodic orbits surrounding the origin. In this paper, we continue to investigate this kind of piecewise differential systems, but now the angle between the two rays is alpha is an element of(0,pi/2)boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2)\cup [3\pi /2,2\pi )$$\end{document}. Using the Chebyshev theory, we prove that the maximum number of hyperbolic limit cycles that can bifurcate from these periodic orbits using the averaging theory of first order is exactly 8 for alpha is an element of(0,pi/2)boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2)\cup [3\pi /2,2\pi )$$\end{document}. Together with our previous work, which concerns on the case of alpha=pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pi /2$$\end{document}, we can conclude that using the averaging theory of first order the maximum number of hyperbolic limit cycles is exactly 8, when this quadratic center is perturbed inside the above-mentioned classes separated by a non-regular line of discontinuity with alpha is an element of(0,pi/2]boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2]\cup [3\pi /2,2\pi )$$\end{document}.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] Limit Cycles for a Class of Piecewise Smooth Quadratic Differential Systems with Multiple Parameters
    Bo, Xuekang
    Tian, Yun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (10):
  • [22] Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and having a center
    Llibre, Jaume
    Zhang, Xiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (01) : 537 - 549
  • [23] Bifurcation of limit cycles in piecewise quadratic differential systems with an invariant straight line
    da Cruz, Leonardo P. C.
    Torregrosa, Joan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
  • [24] Limit Cycles for Discontinuous Planar Piecewise Linear Differential Systems Separated by an Algebraic Curve
    Llibre, Jaume
    Zhang, Xiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2019, 29 (02):
  • [25] Limit Cycles in Discontinuous Planar Piecewise Differential Systems with Multiple Nonlinear Switching Curves
    Wang, Min
    Huang, Lihong
    Wang, Jiafu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (04)
  • [26] Crossing limit cycles of planar discontinuous piecewise differential systems formed by isochronous centres
    Buzzi, Claudio A.
    Carvalho, Yagor Romano
    Llibre, Jaume
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (04): : 710 - 728
  • [27] The limit cycles of a class of piecewise differential systems
    Imane Benabdallah
    Rebiha Benterki
    Jaume Llibre
    Boletín de la Sociedad Matemática Mexicana, 2023, 29
  • [28] The limit cycles of a class of piecewise differential systems
    Benabdallah, Imane
    Benterki, Rebiha
    Llibre, Jaume
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2023, 29 (03):
  • [29] ON LIMIT CYCLES OF PIECEWISE DIFFERENTIAL SYSTEMS FORMED BY ARBITRARY LINEAR SYSTEMS AND A CLASS OF QUADRATIC SYSTEMS
    Berbache, Aziza
    MATHEMATICA BOHEMICA, 2023, 148 (04): : 617 - 629
  • [30] Limit cycles in planar piecewise linear differential systems with nonregular separation line
    Cardin, Pedro Toniol
    Torregrosa, Joan
    PHYSICA D-NONLINEAR PHENOMENA, 2016, 337 : 67 - 82