Limit Cycles in a Class of Planar Discontinuous Piecewise Quadratic Differential Systems with a Non-regular Line of Discontinuity (II)

被引:1
|
作者
He, Dongping [1 ]
Llibre, Jaume [2 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610065, Sichuan, Peoples R China
[2] Univ Autonoma Barcelona, Dept Matematiques, Barcelona 08193, Spain
基金
欧洲研究理事会;
关键词
Limit cycle; discontinuous piecewise polynomial system; quadratic uniform isochronous center; non-regular line of discontinuity; averaging theory; Chebyshev theory; HAMILTONIAN-SYSTEMS; ISOCHRONOUS CENTERS; NUMBER; BIFURCATIONS; PERTURBATIONS;
D O I
10.1007/s00009-024-02714-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In our previous work, we have studied the limit cycles for a class of discontinuous piecewise quadratic polynomial differential systems with a non-regular line of discontinuity, which is formed by two rays starting from the origin and forming an angle alpha=pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha = \pi /2$$\end{document}. The unperturbed system is the quadratic uniform isochronous center x(center dot)=-y+xy\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{x} = -y + x y$$\end{document}, y(center dot)=x+y2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{y} = x + y<^>2$$\end{document} with a family of periodic orbits surrounding the origin. In this paper, we continue to investigate this kind of piecewise differential systems, but now the angle between the two rays is alpha is an element of(0,pi/2)boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2)\cup [3\pi /2,2\pi )$$\end{document}. Using the Chebyshev theory, we prove that the maximum number of hyperbolic limit cycles that can bifurcate from these periodic orbits using the averaging theory of first order is exactly 8 for alpha is an element of(0,pi/2)boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2)\cup [3\pi /2,2\pi )$$\end{document}. Together with our previous work, which concerns on the case of alpha=pi/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =\pi /2$$\end{document}, we can conclude that using the averaging theory of first order the maximum number of hyperbolic limit cycles is exactly 8, when this quadratic center is perturbed inside the above-mentioned classes separated by a non-regular line of discontinuity with alpha is an element of(0,pi/2]boolean OR[3 pi/2,2 pi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,\pi /2]\cup [3\pi /2,2\pi )$$\end{document}.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Limit cycles in a class of planar discontinuous piecewise quadratic differential systems with a non-regular line of discontinuity (I)
    He, Dongping
    Llibre, Jaume
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2025, 229 : 743 - 757
  • [2] Limit Cycles in a Class of Planar Discontinuous Piecewise Quadratic Differential Systems with a Non-regular Line of Discontinuity (II) (vol 21, 174, 2024)
    He, Dongping
    Llibre, Jaume
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (07)
  • [3] The limit cycles of a class of discontinuous piecewise differential systems
    Baymout, Louiza
    Benterki, Rebiha
    Llibre, Jaume
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2024, 13 (04)
  • [4] ON LIMIT CYCLES OF PIECEWISE DIFFERENTIAL SYSTEMS AND A CLASS OF QUADRATIC SYSTEMS
    Berbache, Aziza
    Anasser, El
    MATHEMATICA BOHEMICA, 2022,
  • [5] On the number of limit cycles in piecewise planar quadratic differential systems
    Braun, Francisco
    da Cruz, Leonardo Pereira Costa
    Torregrosa, Joan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 79
  • [6] Limit cycles in small perturbations of a planar piecewise linear Hamiltonian system with a non-regular separation line
    Liang, Feng
    Romanovski, Valery G.
    Zhang, Daoxiang
    CHAOS SOLITONS & FRACTALS, 2018, 111 : 18 - 34
  • [7] ON THE LIMIT CYCLES OF A CLASS OF DISCONTINUOUS PIECEWISE LINEAR DIFFERENTIAL SYSTEMS
    Llibre, Jaume
    Menezes, Lucyjane de A. S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (05): : 1835 - 1858
  • [8] CONTINUOUS-DISCONTINUOUS PIECEWISE DIFFERENTIAL SYSTEMS WITH TWO PIECES SEPARATED BY A NON-REGULAR LINE
    Li, Jie
    Llibre, Jaume
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [9] On the number of limit cycles for a class of discontinuous quadratic differential systems
    Cen, Xiuli
    Li, Shimin
    Zhao, Yulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 449 (01) : 314 - 342
  • [10] Coexistence of Analytic and Piecewise Analytic Limit Cycles in Planar Piecewise Quadratic Differential Systems
    da Cruz, Leonardo P. C.
    Rezende, Alex C.
    Torregrosa, Joan
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (02)