Quantum computing with subwavelength atomic arrays

被引:5
|
作者
Shah, Freya [1 ,2 ]
Patti, Taylor L. [1 ,3 ]
Rubies-Bigorda, Oriol [1 ,4 ]
Yelin, Susanne F. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Ahmedabad Univ, Sch Arts & Sci, Ahmadabad 380015, Gujarat, India
[3] NVIDIA, Santa Clara, CA 95051 USA
[4] MIT, Phys Dept, Cambridge, MA 02139 USA
关键词
INFORMATION;
D O I
10.1103/PhysRevA.109.012613
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photon-mediated interactions in subwavelength atomic arrays have numerous applications in quantum science. In this paper, we explore the potential of three-level quantum emitters, or "impurities" embedded in a two-dimensional atomic array to serve as a platform for quantum computation. By exploiting the altered behavior of impurities as a result of the induced dipole-dipole interactions mediated by subwavelength arrays, we design and simulate a set of universal quantum gates consisting of the root iSWAP and single-qubit rotations. We demonstrate that these gates have very high fidelities due to the long atomic dipole-dipole coherence times, as long as the atoms remain within a proximal range. Finally, we design and simulate quantum circuits leading to the generation of the maximally entangled two-qubit Bell states, as well as the entangled three-qubit Greenberger-Horne-Zeilinger state. These findings establish subwavelength emitter arrays as an alternative platform for quantum computation and quantum simulation.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Atomic-precision advanced manufacturing for Si quantum computing
    Ezra Bussmann
    Robert E. Butera
    James H. G. Owen
    John N. Randall
    Steven M. Rinaldi
    Andrew D. Baczewski
    Shashank Misra
    MRS Bulletin, 2021, 46 : 607 - 615
  • [42] Quantum Computing using MAGIC with Trapped Atomic Ions.
    Boldin, I.
    Briegel, H. J.
    Dunjko, V.
    Esteki, E.
    Friis, N.
    Giri, G. S.
    Gloger, T. F.
    Johanning, M.
    Kaufmann, D.
    Kaufmann, P.
    Kraft, A.
    Okhrimenko, B.
    Forst, M.
    Sriarunothai, Th.
    Woelk, S.
    Wunderlich, Ch.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [43] Quantum computing with atomic qubits and Rydberg interactions: progress and challenges
    Saffman, M.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (20)
  • [44] Scalable Arrays of Micro-Penning Traps for Quantum Computing and Simulation
    Jain, S.
    Alonso, J.
    Grau, M.
    Home, J. P.
    PHYSICAL REVIEW X, 2020, 10 (03):
  • [45] Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity
    Aquilanti, Vincenzo
    Bitencourt, Ana Carla P.
    Ferreira, Cristiane da S.
    Marzuoli, Annalisa
    Ragni, Mirco
    PHYSICA SCRIPTA, 2008, 78 (05)
  • [46] Subwavelength transportation of light with atomic resonances
    Chui, Siu-Tat
    Du, Shengwang
    Jo, Gyu-Boong
    PHYSICAL REVIEW A, 2015, 92 (05):
  • [47] Nano Arrays of optically addressable rare earth doped semiconductor quantum dots for quantum computing
    Konjhodzic, A
    Aly, M
    Chhabria, D
    Hasan, Z
    Wu, M
    Register, RA
    ADVANCED OPTICAL AND QUANTUM MEMORIES AND COMPUTING, 2004, 5362 : 43 - 51
  • [48] Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon
    Jakob, Alexander M.
    Robson, Simon G.
    Firgau, Hannes R.
    Mourik, Vincent
    Schmitt, Vivien
    Holmes, Danielle
    Posselt, Matthias
    Mayes, Edwin L. H.
    Spemann, Daniel
    Mccallum, Jeffrey C.
    Morello, Andrea
    Jamieson, David N.
    ADVANCED MATERIALS, 2024, 36 (40)
  • [49] Quantum and nonlinear effects in light transmitted through planar atomic arrays
    Bettles, Robert J.
    Lee, Mark D.
    Gardiner, Simon A.
    Ruostekoski, Janne
    COMMUNICATIONS PHYSICS, 2020, 3 (01)
  • [50] Quantum and nonlinear effects in light transmitted through planar atomic arrays
    Robert J. Bettles
    Mark D. Lee
    Simon A. Gardiner
    Janne Ruostekoski
    Communications Physics, 3