Scalable Atomic Arrays for Spin-Based Quantum Computers in Silicon

被引:1
|
作者
Jakob, Alexander M. [1 ,2 ]
Robson, Simon G. [1 ,2 ]
Firgau, Hannes R. [2 ,3 ]
Mourik, Vincent [2 ,3 ]
Schmitt, Vivien [2 ,3 ]
Holmes, Danielle [2 ,3 ]
Posselt, Matthias [4 ]
Mayes, Edwin L. H. [5 ]
Spemann, Daniel [6 ]
Mccallum, Jeffrey C. [1 ,2 ]
Morello, Andrea [2 ,3 ]
Jamieson, David N. [1 ,2 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Univ Technol Sydney, ARC Ctr Quantum Computat & Commun Technol CQC2T, Sydney, NSW 2007, Australia
[3] UNSW, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[4] Helmholtz Zent Dresden Rossendorf HZDR, D-01328 Dresden, Saxony, Germany
[5] RMIT Univ, RMIT Microscopy & Microanal Facil, Melbourne, Vic 3001, Australia
[6] Leibniz Inst Oberflachenmodifizierung e V, D-04318 Leipzig, Saxony, Germany
基金
澳大利亚研究理事会;
关键词
deterministic single ion implantation; donor spin qubits and qudits; electronic device engineering; scalable atomic arrays; silicon quantum computing; ION-IMPLANTATION; DAMAGE; PHOTODIODES; INFORMATION; SIMULATION; PROFILES; ANTIMONY;
D O I
10.1002/adma.202405006
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Semiconductor spin qubits combine excellent quantum performance with the prospect of manufacturing quantum devices using industry-standard metal-oxide-semiconductor (MOS) processes. This applies also to ion-implanted donor spins, which further afford exceptional coherence times and large Hilbert space dimension in their nuclear spin. Here multiple strategies are demonstrated and integrated to manufacture scale-up donor-based quantum computers. 31PF2 molecule implants are used to triple the placement certainty compared to 31P ions, while attaining 99.99% confidence in detecting the implant. Similar confidence is retained by implanting heavier atoms such as 123Sb and 209Bi, which represent high-dimensional qudits for quantum information processing, while Sb2 molecules enable deterministic formation of closely-spaced qudits. The deterministic formation of regular arrays of donor atoms with 300 nm spacing is demonstrated, using step-and-repeat implantation through a nano aperture. These methods cover the full gamut of technological requirements for the construction of donor-based quantum computers in silicon. Ion-implanted silicon donor spin qubits afford exceptional quantum performance and show promise for the maturation to powerful quantum computers using standard semiconductor industry processes. This study presents a comprehensive technological suite for the scalable deterministic construction of donor-based qubit and qudit arrays that could be used as quantum processor architectures. image
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Scalable architecture for spin-based quantum computers with a single type of gate
    Suter, D
    Lim, K
    PHYSICAL REVIEW A, 2002, 65 (05): : 5
  • [2] Scalable architecture for spin-based quantum computers with a single type of gate
    Suter, Dieter
    Lim, Kyungwon
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 65 (5 A): : 523091 - 523095
  • [3] Spin-based Quantum Computing in Silicon
    Dzurak, Andrew
    2015 SILICON NANOELECTRONICS WORKSHOP (SNW), 2015,
  • [4] Spin-based Quantum Dot Quantum Computing in Silicon
    Eriksson, Mark A.
    Friesen, Mark
    Coppersmith, Susan N.
    Joynt, Robert
    Klein, Levente J.
    Slinker, Keith
    Tahan, Charles
    Mooney, P. M.
    Chu, J. O.
    Koester, S. J.
    QUANTUM INFORMATION PROCESSING, 2004, 3 (1-5) : 133 - 146
  • [5] Spin-Based Quantum Dot Quantum Computing in Silicon
    Mark A. Eriksson
    Mark Friesen
    Susan N. Coppersmith
    Robert Joynt
    Levente J. Klein
    Keith Slinker
    Charles Tahan
    P. M. Mooney
    J. O. Chu
    S. J. Koester
    Quantum Information Processing, 2004, 3 : 133 - 146
  • [6] Spin-based quantum computers made by chemistry: hows and whys
    Stamp, Philip C. E.
    Gaita-Arino, Alejandro
    JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (12) : 1718 - 1730
  • [7] Silicon quantum dot devices for spin-based quantum computing
    Kodera, Tetsuo
    2020 IEEE SILICON NANOELECTRONICS WORKSHOP (SNW), 2020, : 31 - 32
  • [8] Silicon CMOS architecture for a spin-based quantum computer
    Veldhorst, M.
    Eenink, H. G. J.
    Yang, C. H.
    Dzurak, A. S.
    NATURE COMMUNICATIONS, 2017, 8
  • [9] Silicon CMOS architecture for a spin-based quantum computer
    M. Veldhorst
    H. G. J. Eenink
    C. H. Yang
    A. S. Dzurak
    Nature Communications, 8
  • [10] Spin-based Quantum Computing in Silicon: Scaling with CMOS
    Zalba, Miguel Fernando Gonzalez
    2022 29TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (IEEE ICECS 2022), 2022,