Improved YOLOv8 Model for Lightweight Pigeon Egg Detection

被引:6
|
作者
Jiang, Tao [1 ,2 ]
Zhou, Jie [1 ,2 ]
Xie, Binbin [1 ,2 ]
Liu, Longshen [1 ,2 ]
Ji, Chengyue [1 ,2 ]
Liu, Yao [1 ,2 ]
Liu, Binghan [1 ]
Zhang, Bo [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 210031, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Breeding Equipment, Nanjing 210031, Peoples R China
来源
ANIMALS | 2024年 / 14卷 / 08期
关键词
pigeon egg detection; YOLOv8; partial convolution; efficient multi-scale attention; exponential moving average;
D O I
10.3390/ani14081226
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Simple Summary The utilization of computer vision technology and automation for monitoring and collecting pigeon eggs is of significant importance for improving labor productivity and the breeding of egg-producing pigeons. Currently, research both domestically and internationally has predominantly focused on the detection of eggs from poultry such as chickens, ducks, and geese, leaving pigeon egg recognition largely unexplored. This study proposes an effective and lightweight network model, YOLOv8-PG, based on YOLOv8n, which maintains high detection accuracy while reducing the model's parameter count and computational load. This approach facilitates cost reduction in deployment and enhances feasibility for implementation on mobile robotic platforms.Abstract In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module of the YOLOv8n backbone network and neck network are replaced with Fasternet-EMA Block and Fasternet Block, respectively. The Fasternet Block is designed based on PConv (Partial Convolution) to reduce model parameter count and computational load efficiently. Furthermore, the incorporation of the EMA (Efficient Multi-scale Attention) mechanism helps mitigate interference from complex environments on pigeon-egg feature-extraction capabilities. Additionally, Dysample, an ultra-lightweight and effective upsampler, is introduced into the neck network to further enhance performance with lower computational overhead. Finally, the EXPMA (exponential moving average) concept is employed to optimize the SlideLoss and propose the EMASlideLoss classification loss function, addressing the issue of imbalanced data samples and enhancing the model's robustness. The experimental results showed that the F1-score, mAP50-95, and mAP75 of YOLOv8-PG increased by 0.76%, 1.56%, and 4.45%, respectively, compared with the baseline YOLOv8n model. Moreover, the model's parameter count and computational load are reduced by 24.69% and 22.89%, respectively. Compared to detection models such as Faster R-CNN, YOLOv5s, YOLOv7, and YOLOv8s, YOLOv8-PG exhibits superior performance. Additionally, the reduction in parameter count and computational load contributes to lowering the model deployment costs and facilitates its implementation on mobile robotic platforms.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [2] A Lightweight Fire Detection Algorithm Based on the Improved YOLOv8 Model
    Ma, Shuangbao
    Li, Wennan
    Wan, Li
    Zhang, Guoqin
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [3] A lightweight model for echo trace detection in echograms based on improved YOLOv8
    Ma, Jungang
    Tong, Jianfeng
    Xue, Minghua
    Yao, Junfan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [4] Lightweight construction safety behavior detection model based on improved YOLOv8
    Kan Huang
    Mideth B. Abisado
    Discover Applied Sciences, 7 (4)
  • [5] Helmet detection algorithm based on lightweight improved YOLOv8
    Wang, Maoli
    Qiu, Haitao
    Wang, Jiarui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [6] Improved Lightweight Military Aircraft Detection Algorithm of YOLOv8
    Liu, Li
    Zhang, Shuo
    Bai, Yu’ang
    Li, Yujian
    Zhang, Chuxia
    Computer Engineering and Applications, 2024, 60 (18) : 114 - 125
  • [7] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [8] Lightweight outdoor drowning detection based on improved YOLOv8
    Liu, Xiangju
    Shuai, Tao
    Liu, Dezeng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [9] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214
  • [10] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131