A lightweight model for echo trace detection in echograms based on improved YOLOv8

被引:0
|
作者
Ma, Jungang [1 ,2 ,3 ,4 ]
Tong, Jianfeng [1 ,2 ,3 ]
Xue, Minghua [1 ,2 ,3 ]
Yao, Junfan [1 ,2 ,3 ]
机构
[1] Shanghai Ocean Univ, Coll Marine Living Resource Sci & Management, Shanghai 201306, Peoples R China
[2] Natl Engn Res Ctr Ocean Fisheries, Shanghai 201306, Peoples R China
[3] Minist Educ, Key Lab Sustainable Exploitat Ocean Fisheries Reso, Shanghai 201306, Peoples R China
[4] Shanghai Ocean Univ, Coll Engn Sci & Technol, Shanghai 201306, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
基金
国家重点研发计划;
关键词
D O I
10.1038/s41598-024-82078-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the rise of underwater unmanned platforms like unmanned boats, ROVs, and AUVs, there's an increasing need for underwater detection technologies. Researchers have merged scientific echosounders with these platforms for biometric applications. However, current detection models are too parameter-heavy to embed in echosounders and struggle with noisy, irregular, and dense echograms. This paper introduces YOLOv8-SBE, a lightweight fish detection model based on YOLOv8, addressing these issues by enhancing feature extraction, information fusion, and small object recognition. YOLOv8-SBE adds the C2f_ScConv module to improve efficiency and reduce parameters, incorporates the BiFPN structure to enhance information transfer, and uses the EMA attention module for better small target recognition. It reduces computational complexity by 18.5%, decreases model parameters by 40%, and improves mAP0.5 to 79.5% and mAP0.5:0.95 to 58.2%, making it suitable for echosounders with limited resources.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Lightweight Fire Detection Algorithm Based on the Improved YOLOv8 Model
    Ma, Shuangbao
    Li, Wennan
    Wan, Li
    Zhang, Guoqin
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [2] Improved YOLOv8 Model for Lightweight Pigeon Egg Detection
    Jiang, Tao
    Zhou, Jie
    Xie, Binbin
    Liu, Longshen
    Ji, Chengyue
    Liu, Yao
    Liu, Binghan
    Zhang, Bo
    ANIMALS, 2024, 14 (08):
  • [3] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)
  • [4] Lightweight construction safety behavior detection model based on improved YOLOv8
    Kan Huang
    Mideth B. Abisado
    Discover Applied Sciences, 7 (4)
  • [5] Helmet detection algorithm based on lightweight improved YOLOv8
    Wang, Maoli
    Qiu, Haitao
    Wang, Jiarui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (01)
  • [6] Lightweight outdoor drowning detection based on improved YOLOv8
    Liu, Xiangju
    Shuai, Tao
    Liu, Dezeng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [7] Lightweight insulator defect detection algorithm based on improved YOLOv8
    Tang, Mingyue
    Wu, Hang
    PROCEEDINGS OF 2024 3RD INTERNATIONAL CONFERENCE ON CYBER SECURITY, ARTIFICIAL INTELLIGENCE AND DIGITAL ECONOMY, CSAIDE 2024, 2024, : 197 - 201
  • [8] Lightweight Insulator and Defect Detection Method Based on Improved YOLOv8
    Liu, Yanxing
    Li, Xudong
    Qiao, Ruyu
    Chen, Yu
    Han, Xueliang
    Paul, Agyemang
    Wu, Zhefu
    APPLIED SCIENCES-BASEL, 2024, 14 (19):
  • [9] A lightweight rice pest detection algorithm based on improved YOLOv8
    Zheng, Yong
    Zheng, Weiheng
    Du, Xia
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] Lightweight Road Damage Detection Method Based on Improved YOLOv8
    Xu, Tiefeng
    Huang, He
    Zhang, Hongmin
    Niu, Xiaofu
    Computer Engineering and Applications, 60 (14): : 175 - 186