Improved YOLOv8 Model for Lightweight Pigeon Egg Detection

被引:6
|
作者
Jiang, Tao [1 ,2 ]
Zhou, Jie [1 ,2 ]
Xie, Binbin [1 ,2 ]
Liu, Longshen [1 ,2 ]
Ji, Chengyue [1 ,2 ]
Liu, Yao [1 ,2 ]
Liu, Binghan [1 ]
Zhang, Bo [1 ,2 ]
机构
[1] Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 210031, Peoples R China
[2] Minist Agr & Rural Affairs, Key Lab Breeding Equipment, Nanjing 210031, Peoples R China
来源
ANIMALS | 2024年 / 14卷 / 08期
关键词
pigeon egg detection; YOLOv8; partial convolution; efficient multi-scale attention; exponential moving average;
D O I
10.3390/ani14081226
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Simple Summary The utilization of computer vision technology and automation for monitoring and collecting pigeon eggs is of significant importance for improving labor productivity and the breeding of egg-producing pigeons. Currently, research both domestically and internationally has predominantly focused on the detection of eggs from poultry such as chickens, ducks, and geese, leaving pigeon egg recognition largely unexplored. This study proposes an effective and lightweight network model, YOLOv8-PG, based on YOLOv8n, which maintains high detection accuracy while reducing the model's parameter count and computational load. This approach facilitates cost reduction in deployment and enhances feasibility for implementation on mobile robotic platforms.Abstract In response to the high breakage rate of pigeon eggs and the significant labor costs associated with egg-producing pigeon farming, this study proposes an improved YOLOv8-PG (real versus fake pigeon egg detection) model based on YOLOv8n. Specifically, the Bottleneck in the C2f module of the YOLOv8n backbone network and neck network are replaced with Fasternet-EMA Block and Fasternet Block, respectively. The Fasternet Block is designed based on PConv (Partial Convolution) to reduce model parameter count and computational load efficiently. Furthermore, the incorporation of the EMA (Efficient Multi-scale Attention) mechanism helps mitigate interference from complex environments on pigeon-egg feature-extraction capabilities. Additionally, Dysample, an ultra-lightweight and effective upsampler, is introduced into the neck network to further enhance performance with lower computational overhead. Finally, the EXPMA (exponential moving average) concept is employed to optimize the SlideLoss and propose the EMASlideLoss classification loss function, addressing the issue of imbalanced data samples and enhancing the model's robustness. The experimental results showed that the F1-score, mAP50-95, and mAP75 of YOLOv8-PG increased by 0.76%, 1.56%, and 4.45%, respectively, compared with the baseline YOLOv8n model. Moreover, the model's parameter count and computational load are reduced by 24.69% and 22.89%, respectively. Compared to detection models such as Faster R-CNN, YOLOv5s, YOLOv7, and YOLOv8s, YOLOv8-PG exhibits superior performance. Additionally, the reduction in parameter count and computational load contributes to lowering the model deployment costs and facilitates its implementation on mobile robotic platforms.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios
    Wang, Jinfeng
    Ma, Siyuan
    Wang, Zhentao
    Ma, Xinhua
    Yang, Chunhe
    Chen, Guoqing
    Wang, Yijia
    AGRONOMY-BASEL, 2025, 15 (02):
  • [22] PV-YOLO: A lightweight pedestrian and vehicle detection model based on improved YOLOv8
    Liu, Yuhang
    Huang, Zhenghua
    Song, Qiong
    Bai, Kun
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [23] FE-YOLO: A Lightweight Model for Construction Waste Detection Based on Improved YOLOv8 Model
    Yang, Yizhong
    Li, Yexue
    Tao, Maohu
    BUILDINGS, 2024, 14 (09)
  • [24] FFYOLO: A Lightweight Forest Fire Detection Model Based on YOLOv8
    Yun, Bensheng
    Zheng, Yanan
    Lin, Zhenyu
    Li, Tao
    FIRE-SWITZERLAND, 2024, 7 (03):
  • [25] A lightweight algorithm for steel surface defect detection using improved YOLOv8
    Ma, Shuangbao
    Zhao, Xin
    Wan, Li
    Zhang, Yapeng
    Gao, Hongliang
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] A lightweight Yunnan Xiaomila detection and pose estimation based on improved YOLOv8
    Wang, Fenghua
    Tang, Yuan
    Gong, Zaipeng
    Jiang, Jin
    Chen, Yu
    Xu, Qiang
    Hu, Peng
    Zhu, Hailong
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [27] An Improved Lightweight YOLOv8 Network for Early Small Flame Target Detection
    Du, Hubin
    Li, Qiuyu
    Guan, Ziqian
    Zhang, Hengyuan
    Liu, Yongtao
    PROCESSES, 2024, 12 (09)
  • [28] Detecting chestnuts using improved lightweight YOLOv8
    Li M.
    Xiao Y.
    Zong W.
    Song B.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (01): : 201 - 209
  • [29] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [30] Improved lightweight infrared road target detection method based on YOLOv8
    Yao, Jialong
    Xu, Sheng
    Feijiang, Huang
    Su, Chengyue
    INFRARED PHYSICS & TECHNOLOGY, 2024, 141