Using machine learning models to predict falls in hospitalised adults

被引:0
|
作者
Jahandideh, S. [1 ]
Hutchinson, A. F. [1 ,2 ]
Bucknall, T. K. [1 ,3 ]
Considine, J. [1 ,4 ]
Driscoll, A. [1 ]
Manias, E. [1 ]
Phillips, N. M. [1 ]
Rasmussen, B. [1 ,5 ]
Vos, N. [6 ]
Hutchinson, A. M. [1 ,7 ,8 ]
机构
[1] Deakin Univ, Inst Hlth Transformat, Ctr Qual & Patient Safety Res, Sch Nursing & Midwifery, Geelong, Vic, Australia
[2] Epworth HealthCare, Richmond, Vic, Australia
[3] Alfred Hlth, Prahran, Vic, Australia
[4] Eastern Hlth, Box Hill, Vic, Australia
[5] Western Hlth, Sunshine, Vic, Australia
[6] Monash Hlth, Clayton, Vic, Australia
[7] Barwon Hlth, Geelong, Vic, Australia
[8] Deakin Univ, Sch Nursing & Midwifery, 1 Gheringhap St, Geelong, Vic 3220, Australia
关键词
Electronic health records; Decision making; Machine learning; Random forest; Deep neural network; Fall prediction; Health service;
D O I
10.1016/j.ijmedinf.2024.105436
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: Identifying patients at high risk of falling is crucial in implementing effective fall prevention programs. While the integration of information systems is becoming more widespread in the healthcare industry, it poses a significant challenge in analysing vast amounts of data to identify factors that could enhance patient safety. Objective: To determine fall-associated factors and develop high-performance prediction tools for at-risk patients in acute and sub-acute care services in Australia. Methods: A retrospective study of 672,400 patients admitted to acute and sub-acute care services within a large metropolitan tertiary health service in Victoria, Australia, between January 1, 2019, and December 31, 2021. Data were obtained from four sources: the Department of Health Victorian Admitted Episodes Dataset, RiskMan TM , electronic health records, and the health workforce dataset. Machine learning techniques, including Random Forest and Deep Neural Network models, were used to analyse the data, predict patient falls, and identify the most important risk factors for falls in this population. Model performance was evaluated using accuracy, F1 -score, precision, recall, specificity, Matthew 's correlation coefficient, and the area under the receiver operating characteristic curve (AUC). Results: The deep neural network and random forest models were highly accurate in predicting hospital patient falls. The deep neural network model achieved an accuracy of 0.988 and a specificity of 0.999, while the RF achieved an accuracy of 0.989 and a specificity of 1.000. The top 20 variables impacting falls were compared across both models, and 12 common factors were identified. These factors can be broadly classified into three categories: patient-related factors, staffing-related factors, and admission-related factors. Although not all factors are modifiable, they must be considered when planning fall prevention interventions. Conclusion: The study demonstrated machine learning 's potential to predict falls and identify key risk factors. Further validation across diverse populations and settings is essential for broader applicability.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Mindful Machine Learning Using Machine Learning Algorithms to Predict the Practice of Mindfulness
    Sauer, Sebastian
    Buettner, Ricardo
    Heidenreich, Thomas
    Lemke, Jana
    Berg, Christoph
    Kurz, Christoph
    EUROPEAN JOURNAL OF PSYCHOLOGICAL ASSESSMENT, 2018, 34 (01) : 6 - 13
  • [42] A Clinical Decision Web to Predict ICU Admission or Death for Patients Hospitalised with COVID-19 Using Machine Learning Algorithms
    Aznar-Gimeno, Rocio
    Esteban, Luis M.
    Labata-Lezaun, Gorka
    del-Hoyo-Alonso, Rafael
    Abadia-Gallego, David
    Ramon Pano-Pardo, J.
    Jose Esquillor-Rodrigo, M.
    Lanas, Angel
    Trinidad Serrano, M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (16)
  • [43] Using machine learning to predict Hemophilia A severity
    Duque, Daniel de Almeida
    Meira, Debora Dummer
    Altoe, Lorena Souza Castro
    Casotti, Matheus Correia
    Lopes, Tiago Jose da Silva
    Louro, Iuri Drumond
    Varejao, Flavio Miguel
    CURRENT RESEARCH IN TRANSLATIONAL MEDICINE, 2025, 73 (03)
  • [44] USING MACHINE LEARNING TO PREDICT REALIZED VARIANCE
    Carr, Peter
    Wu, Liuren
    Zhang, Zhibai
    JOURNAL OF INVESTMENT MANAGEMENT, 2020, 18 (02): : 57 - 72
  • [45] Using Machine Learning to Predict Enthalpy of Solvation
    Brandon J. Jaquis
    Ailin Li
    Nolan D. Monnier
    Robert G. Sisk
    William E. Acree
    Andrew S. I. D. Lang
    Journal of Solution Chemistry, 2019, 48 : 564 - 573
  • [46] Using Machine Learning to Predict Enthalpy of Solvation
    Jaquis, Brandon J.
    Li, Ailin
    Monnier, Nolan D.
    Sisk, Robert G.
    Acree, William E., Jr.
    Lang, Andrew S. I. D.
    JOURNAL OF SOLUTION CHEMISTRY, 2019, 48 (04) : 564 - 573
  • [47] Recognition of Falls and Daily Living Activities Using Machine Learning
    Chelli, Ali
    Patzold, Matthias
    2018 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2018,
  • [48] Detecting Falls with Wearable Sensors Using Machine Learning Techniques
    Ozdemir, Ahmet Turan
    Barshan, Billur
    SENSORS, 2014, 14 (06) : 10691 - 10708
  • [49] Using Machine Learning to Predict Consolidation Parameters
    Thurmond, Patrick A.
    Worley, H. Clay
    GEO-CONGRESS 2024: GEOTECHNICAL DATA ANALYSIS AND COMPUTATION, 2024, 352 : 445 - 453
  • [50] Using Machine Learning to Predict Chat Difficulty
    Walker, Jeremy
    Coleman, Jason
    COLLEGE & RESEARCH LIBRARIES, 2021, 82 (05): : 683 - 707