Boas-type theorems for the second Hankel–Clifford transform

被引:0
|
作者
Mahfoud A. [1 ]
El Hamma M. [1 ]
机构
[1] Laboratory: Fundamental and Applied Mathematics (LMFA), Department of Mathematics and Informatics, Faculty of Sciences Aïn Chock, University of Hassan II, B.P 5366, Maarif, Casablanca
关键词
42B10; 46F12; Boas theorems; Lipschitz condition; Second Hankel–Clifford transform;
D O I
10.1007/s11565-023-00471-8
中图分类号
学科分类号
摘要
The purpose of the present work is to study the necessary and sufficient condition in terms of the second Hankel–Clifford transform h2,μ(f), to ensure that f belong either to one of the generalized Lipschitz classes Hαm and hαm for α>0. © The Author(s) under exclusive license to Università degli Studi di Ferrara 2023.
引用
收藏
页码:273 / 283
页数:10
相关论文
共 50 条
  • [41] Paley-Wiener and Boas Theorems for the Quaternion Fourier Transform
    Yingxiong Fu
    Luoqing Li
    Advances in Applied Clifford Algebras, 2013, 23 : 837 - 848
  • [42] Dini Clifford Lipschitz functions for the first Hankel-Clifford transform in the space Lμ2
    Mahfoud, Ayoub
    El Hamma, Mohamed
    JOURNAL OF ANALYSIS, 2022, 30 (02): : 909 - 918
  • [43] Real Paley-Wiener theorems for the Hankel transform
    Andersen, NB
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2006, 12 (01) : 17 - 25
  • [44] Real Paley-Wiener Theorems for the Hankel Transform
    Nils Byrial Andersen
    Journal of Fourier Analysis and Applications, 2006, 12 : 17 - 25
  • [45] Wavelet Transformation Associated with Second Hankel-Clifford Transformation
    Prasad, Akhilesh
    Kumar, Sumant
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2015, 38 (06): : 493 - 496
  • [46] A pair of fractional Hankel-Clifford transform on Sobolev-type spaces: theory, examples, and applications
    Kumar, Manish
    Pradhan, Tusharakanta
    ADVANCES IN OPERATOR THEORY, 2022, 7 (04)
  • [47] On estimates for the first Hankel-Clifford transform in the space Lμp
    Lahmadi, Hasnaa
    El Hamma, Mohamed
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 1479 - 1486
  • [48] An analog of the Titchmarsh's theorem for the first Hankel-Clifford transform
    El Hamma, M.
    Daher, R.
    Mahfoud, A.
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1129 - 1136
  • [49] An analog of the Titchmarsh’s theorem for the first Hankel-Clifford transform
    M. El Hamma
    R. Daher
    A. Mahfoud
    The Journal of Analysis, 2021, 29 : 1129 - 1136
  • [50] (β, γ)-SECOND HANKEL-CLIFFORD LIPSCHITZ FUNCTIONS IN THE SPACE Lμ2
    El Hamma, Mohamed
    Mahfoud, Ayoub
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2024, 178 (01) : 45 - 52