Boas-type theorems for the second Hankel–Clifford transform

被引:0
|
作者
Mahfoud A. [1 ]
El Hamma M. [1 ]
机构
[1] Laboratory: Fundamental and Applied Mathematics (LMFA), Department of Mathematics and Informatics, Faculty of Sciences Aïn Chock, University of Hassan II, B.P 5366, Maarif, Casablanca
关键词
42B10; 46F12; Boas theorems; Lipschitz condition; Second Hankel–Clifford transform;
D O I
10.1007/s11565-023-00471-8
中图分类号
学科分类号
摘要
The purpose of the present work is to study the necessary and sufficient condition in terms of the second Hankel–Clifford transform h2,μ(f), to ensure that f belong either to one of the generalized Lipschitz classes Hαm and hαm for α>0. © The Author(s) under exclusive license to Università degli Studi di Ferrara 2023.
引用
收藏
页码:273 / 283
页数:10
相关论文
共 50 条
  • [21] TAUBERIAN THEOREMS FOR HANKEL TRANSFORM
    RIDENHOU.JR
    SONI, RP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1104 - &
  • [22] A NEW GENERAL BOAS-TYPE INEQUALITY AND RELATED CAUCHY-TYPE MEANS
    Cizmesija, A.
    Pecaric, J.
    Pokaz, D.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 599 - 617
  • [23] Theorems connecting Stieltjes transform and Hankel transform
    Kumar, Virendra
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (02): : 605 - 613
  • [24] Theorems connecting Stieltjes transform and Hankel transform
    Virendra Kumar
    São Paulo Journal of Mathematical Sciences, 2020, 14 : 605 - 613
  • [25] BOAS-TYPE INEQUALITY FOR 3-CONVEX FUNCTIONS AT A POINT
    Pecaric, Josip
    Pokaz, Dora
    Praljak, Marjan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (04): : 1363 - 1374
  • [26] SOME THEOREMS ON GENERALISED HANKEL TRANSFORM
    SINGH, SP
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 1964, 34 (01): : 5 - &
  • [27] n-EXPONENTIAL CONVEXITY OF HARDY-TYPE AND BOAS-TYPE FUNCTIONALS
    Iqbal, Sajid
    Himmelreich, Kristina Krulic
    Pecaric, Josip
    Pokaz, Dora
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (04): : 739 - 750
  • [28] Paley-Wiener-Type theorems for the Clifford-Fourier transform
    Li, Shanshan
    Leng, Jinsong
    Fei, Minggang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6101 - 6113
  • [29] Theorems connecting Fourier sine transform and Hankel transform
    Kumar V.
    SeMA Journal, 2020, 77 (2) : 219 - 225
  • [30] Weyl transforms associated with the Hankel transform in Clifford analysis
    Zhao, JM
    Li, HB
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2006, 29 (07) : 839 - 851