AMDDLmodel: Android smartphones malware detection using deep learning model

被引:4
|
作者
Aamir, Muhammad [1 ]
Iqbal, Muhammad Waseem [2 ]
Nosheen, Mariam [3 ]
Ashraf, M. Usman [4 ]
Shaf, Ahmad [1 ]
Almarhabi, Khalid Ali [5 ]
Alghamdi, Ahmed Mohammed [6 ]
Bahaddad, Adel A. [7 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Sahiwal Campus, Sahiwal, Pakistan
[2] Super Univ, Dept Software Engn, Lahore, Pakistan
[3] Lahore Coll Women Univ LCWU, Comp Sci Dept, Lahore, Pakistan
[4] GC Women Univ Sialkot, Dept Comp Sci, Sialkot, Pakistan
[5] Umm Al Qura Univ, Coll Comp Al Qunfudah, Dept Comp Sci, Mecca, Saudi Arabia
[6] Univ Jeddah, Coll Comp Sci & Engn, Dept Software Engn, Jeddah, Saudi Arabia
[7] King Abdulaziz Univ, Dept Informat Syst, Jeddah, Saudi Arabia
来源
PLOS ONE | 2024年 / 19卷 / 01期
关键词
D O I
10.1371/journal.pone.0296722
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Android is the most popular operating system of the latest mobile smart devices. With this operating system, many Android applications have been developed and become an essential part of our daily lives. Unfortunately, different kinds of Android malware have also been generated with these applications' endless stream and somehow installed during the API calls, permission granted and extra packages installation and badly affected the system security rules to harm the system. Therefore, it is compulsory to detect and classify the android malware to save the user's privacy to avoid maximum damages. Many research has already been developed on the different techniques related to android malware detection and classification. In this work, we present AMDDLmodel a deep learning technique that consists of a convolutional neural network. This model works based on different parameters, filter sizes, number of epochs, learning rates, and layers to detect and classify the android malware. The Drebin dataset consisting of 215 features was used for this model evaluation. The model shows an accuracy value of 99.92%. The other statistical values are precision, recall, and F1-score. AMDDLmodel introduces innovative deep learning for Android malware detection, enhancing accuracy and practical user security through inventive feature engineering and comprehensive performance evaluation. The AMDDLmodel shows the highest accuracy values as compared to the existing techniques.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] MDLDroid: Multimodal Deep Learning Based Android Malware Detection
    Singh, Narendra
    Tripathy, Somanath
    INFORMATION SYSTEMS SECURITY, ICISS 2023, 2023, 14424 : 159 - 177
  • [42] Droid-Sec: Deep Learning in Android Malware Detection
    Yuan, Zhenlong
    Lu, Yongqiang
    Wang, Zhaoguo
    Xue, Yibo
    SIGCOMM'14: PROCEEDINGS OF THE 2014 ACM CONFERENCE ON SPECIAL INTEREST GROUP ON DATA COMMUNICATION, 2014, : 371 - 372
  • [43] Android malware detection for timely detection using multi-class deep learning methods
    Anusha, M.
    Karthika, M.
    INTERNATIONAL JOURNAL OF INTELLIGENT ENGINEERING INFORMATICS, 2024, 12 (02) : 213 - 235
  • [44] Droid-Sec: Deep Learning in Android Malware Detection
    Yuan, Zhenlong
    Lu, Yongqiang
    Wang, Zhaoguo
    Xue, Yibo
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2014, 44 (04) : 371 - 372
  • [45] SHIELD: A Multimodal Deep Learning Framework for Android Malware Detection
    Singh, Narendra
    Tripathy, Somanath
    Bezawada, Bruhadeshwar
    INFORMATION SYSTEMS SECURITY, ICISS 2022, 2022, 13784 : 64 - 83
  • [46] Android malware detection using network traffic based on sequential deep learning models
    Fallah, Somayyeh
    Bidgoly, Amir Jalaly
    SOFTWARE-PRACTICE & EXPERIENCE, 2022, 52 (09): : 1987 - 2004
  • [47] Deep learning for effective Android malware detection using API call graph embeddings
    Abdurrahman Pektaş
    Tankut Acarman
    Soft Computing, 2020, 24 : 1027 - 1043
  • [48] Deep learning for effective Android malware detection using API call graph embeddings
    Pektas, Abdurrahman
    Acarman, Tankut
    SOFT COMPUTING, 2020, 24 (02) : 1027 - 1043
  • [49] End-to-end malware detection for android IoT devices using deep learning
    Ren, Zhongru
    Wu, Haomin
    Ning, Qian
    Hussain, Iftikhar
    Chen, Bingcai
    AD HOC NETWORKS, 2020, 101
  • [50] Malware Detection Using Machine Learning Algorithms in Android
    Sri, Kovvuri Ramya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 561 - 568