MDLDroid: Multimodal Deep Learning Based Android Malware Detection

被引:1
|
作者
Singh, Narendra [1 ]
Tripathy, Somanath [1 ]
机构
[1] Indian Inst Technol Patna, Dept Comp Sci & Engn, Dayalpur Daulatpur, India
来源
关键词
Android; Malware detection; Dynamic Analysis; System call; Dynamic API; COMPUTER; FEATURES;
D O I
10.1007/978-3-031-49099-6_10
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the era of Industry 5.0, there has been tremendous usage of android platforms in several handheld and mobile devices. The openness of the android platform makes it vulnerable for critical malware attacks. Meanwhile, there is also dramatic advancement in malware obfuscation and evading strategies. This leads to failure of traditional malware detection methods. Recently, machine learning techniques have shown promising outcome for malware detection. But past works utilizing machine learning algorithms suffer from several challenges such as inadequate feature extraction, dependency on hand-crafted features, and many more. Thus, existing machine learning approaches are inefficient in detecting sophisticated malware, thus require further enhancement. In this paper, we extract behavioural characteristics of system calls and dynamic API features using our proposed multimodal deep learning model (MDLDroid). Our model extracts system call features using LSTM layers and extracts dynamic API features using CNN. Further, both the features are fused in a vector space which is finally classified for benign and malign categories. Comparison with several state-of-the-art approaches on two dataset shows a significant improvement of 4-12% by the metric accuracy.
引用
收藏
页码:159 / 177
页数:19
相关论文
共 50 条
  • [1] SHIELD: A Multimodal Deep Learning Framework for Android Malware Detection
    Singh, Narendra
    Tripathy, Somanath
    Bezawada, Bruhadeshwar
    INFORMATION SYSTEMS SECURITY, ICISS 2022, 2022, 13784 : 64 - 83
  • [2] Review of Android Malware Detection Based on Deep Learning
    Wang, Zhiqiang
    Liu, Qian
    Chi, Yaping
    IEEE ACCESS, 2020, 8 : 181102 - 181126
  • [3] Towards Multimodal Learning for Android Malware Detection
    McGiff, Josh
    Hatcher, William G.
    Nguyen, James
    Yu, Wei
    Blasch, Erik
    Lu, Chao
    2019 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2019, : 432 - 436
  • [4] A Multimodal Deep Learning Method for Android Malware Detection Using Various Features
    Kim, TaeGuen
    Kang, BooJoong
    Rho, Mina
    Sezer, Sakir
    Im, Eul Gyu
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2019, 14 (03) : 773 - 788
  • [5] Android Malware Detection Based on Deep Learning: Achievements and Challenges
    Chen Yi
    Tang Di
    Zou Wei
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (09) : 2082 - 2094
  • [6] A Robust Approach for Android Malware Detection Based on Deep Learning
    Li P.-W.
    Jiang Y.-Q.
    Xue F.-Y.
    Huang J.-J.
    Xu C.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (08): : 1502 - 1508
  • [7] Android Malware Detection Based on a Hybrid Deep Learning Model
    Lu, Tianliang
    Du, Yanhui
    Ouyang, Li
    Chen, Qiuyu
    Wang, Xirui
    SECURITY AND COMMUNICATION NETWORKS, 2020, 2020 (2020)
  • [8] Android Malware Detection Using Deep Learning
    Elayan, Omar N.
    Mustafa, Ahmad M.
    12TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 4TH INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2021, 184 : 847 - 852
  • [9] Multimodal Neural Network Based Malware Detection for Android
    Gu, Fuxuan
    Du, Zhibo
    2024 2ND INTERNATIONAL CONFERENCE ON MOBILE INTERNET, CLOUD COMPUTING AND INFORMATION SECURITY, MICCIS 2024, 2024, : 63 - 67
  • [10] A lightweight deep learning-based android malware detection framework
    Ma, Runze
    Yin, Shangnan
    Feng, Xia
    Zhu, Huijuan
    Sheng, Victor S.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255