Conversion of single-energy CT to parametric maps of dual-energy CT using convolutional neural network

被引:2
|
作者
Kim, Sangwook [1 ,2 ]
Lee, Jimin [1 ,3 ]
Kim, Jungye [4 ]
Kim, Bitbyeol [5 ]
Choi, Chang Heon [5 ,6 ,7 ,8 ]
Jung, Seongmoon [1 ,5 ,7 ,8 ,9 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Nucl Engn, Ulsan 44919, South Korea
[2] Univ Toronto, Dept Med Biophys, Toronto, ON M5S 1A1, Canada
[3] Ulsan Natl Inst Sci & Technol, Grad Sch Artificial Intelligence, Ulsan 44919, South Korea
[4] Korea Univ, Dept Biomed Engn, Seoul 02841, South Korea
[5] Seoul Natl Univ Hosp, Dept Radiat Oncol, Seoul 03080, South Korea
[6] Seoul Natl Univ, Coll Med, Dept Radiat Oncol, Seoul 03080, South Korea
[7] Seoul Natl Univ Hosp, Biomed Res Inst, Seoul 03080, South Korea
[8] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, Seoul 03080, South Korea
[9] Korea Res Inst Stand & Sci, Div Biomed Metrol, Ionizing Radiat Grp, Daejeon 34114, South Korea
来源
BRITISH JOURNAL OF RADIOLOGY | 2024年 / 97卷 / 1158期
基金
新加坡国家研究基金会;
关键词
dual-energy computed tomography; convolutional neural network; deep learning; virtual monoenergetic imaging; effective atomic number; relative electron density;
D O I
10.1093/bjr/tqae076
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives We propose a deep learning (DL) multitask learning framework using convolutional neural network for a direct conversion of single-energy CT (SECT) to 3 different parametric maps of dual-energy CT (DECT): virtual-monochromatic image (VMI), effective atomic number (EAN), and relative electron density (RED).Methods We propose VMI-Net for conversion of SECT to 70, 120, and 200 keV VMIs. In addition, EAN-Net and RED-Net were also developed to convert SECT to EAN and RED. We trained and validated our model using 67 patients collected between 2019 and 2020. Single-layer CT images with 120 kVp acquired by the DECT (IQon spectral CT; Philips Healthcare, Amsterdam, Netherlands) were used as input, while the VMIs, EAN, and RED acquired by the same device were used as target. The performance of the DL framework was evaluated by absolute difference (AD) and relative difference (RD).Results The VMI-Net converted 120 kVp SECT to the VMIs with AD of 9.02 Hounsfield Unit, and RD of 0.41% compared to the ground truth VMIs. The ADs of the converted EAN and RED were 0.29 and 0.96, respectively, while the RDs were 1.99% and 0.50% for the converted EAN and RED, respectively.Conclusions SECT images were directly converted to the 3 parametric maps of DECT (ie, VMIs, EAN, and RED). By using this model, one can generate the parametric information from SECT images without DECT device. Our model can help investigate the parametric information from SECT retrospectively.Advances in knowledge DL framework enables converting SECT to various high-quality parametric maps of DECT.
引用
收藏
页码:1180 / 1190
页数:11
相关论文
共 50 条
  • [41] Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast
    Sven F. Thieme
    Winfried Möller
    Sven Becker
    Uwe Schuschnig
    Oliver Eickelberg
    Andreas D. Helck
    Maximilian F. Reiser
    Thorsten R. C. Johnson
    European Radiology, 2012, 22 : 2110 - 2116
  • [42] Synthetic Dual Energy CT Imaging from Single Energy CT Using Deep Attention Neural Network
    Wang, Tonghe
    Charyyev, Serdar
    Lei, Yang
    Ghavidel, Beth
    Beitler, Jonathan J.
    McDonald, Mark
    Curran, Walter J.
    Zhou, Jun
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [43] Comparison of the effect of radiation exposure from dual-energy CT versus single-energy CT on double-strand breaks at CT pulmonary angiography
    Tao, Shu Min
    Li, Xie
    Schoepf, U. Joseph
    Nance, John W., Jr.
    Jacobs, Brian E.
    Zhou, Chang Sheng
    Gu, Hai Feng
    Lu, Meng Jie
    Lu, Guang Ming
    Zhang, Long Jiang
    EUROPEAN JOURNAL OF RADIOLOGY, 2018, 101 : 92 - 96
  • [44] Ventilation imaging of the paranasal sinuses using xenon-enhanced dynamic single-energy CT and dual-energy CT: a feasibility study in a nasal cast
    Thieme, Sven F.
    Moeller, Winfried
    Becker, Sven
    Schuschnig, Uwe
    Eickelberg, Oliver
    Helck, Andreas D.
    Reiser, Maximilian F.
    Johnson, Thorsten R. C.
    EUROPEAN RADIOLOGY, 2012, 22 (10) : 2110 - 2116
  • [45] Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT-prospective validation of a quantitative method
    Jendeberg, Johan
    Thunberg, Per
    Popiolek, Marcin
    Liden, Mats
    EUROPEAN RADIOLOGY, 2021, 31 (08) : 5980 - 5989
  • [46] Letter to Editor “Dual-energy CT for the detection of skull base invasion in nasopharyngeal carcinoma: comparison of simulated single-energy CT and MRI”
    Takashi Hiyama
    Hirofumi Kuno
    Insights into Imaging, 14 (1)
  • [47] Cost-effectiveness of dual-energy CT versus multiphasic single-energy CT and MRI for characterization of incidental indeterminate renal lesions
    Bhavik N. Patel
    Artem T. Boltyenkov
    Maria G. Martinez
    Domenico Mastrodicasa
    Daniele Marin
    R. Brooke Jeffrey
    Benjamin Chung
    Pari Pandharipande
    Avinash Kambadakone
    Abdominal Radiology, 2020, 45 : 1896 - 1906
  • [48] Cost-effectiveness of dual-energy CT versus multiphasic single-energy CT and MRI for characterization of incidental indeterminate renal lesions
    Patel, Bhavik N.
    Boltyenkov, Artem T.
    Martinez, Maria G.
    Mastrodicasa, Domenico
    Marin, Daniele
    Jeffrey, R. Brooke
    Chung, Benjamin
    Pandharipande, Pari
    Kambadakone, Avinash
    ABDOMINAL RADIOLOGY, 2020, 45 (06) : 1896 - 1906
  • [49] Assessment of Calcified Carotid Plaque Volume: Comparison of Contrast-Enhanced Dual-Energy CT Angiography and Native Single-Energy CT
    Watanabe, Yoshiyuki
    Nakazawa, Tetsuro
    Higashi, Masahiro
    Itoh, Toshihide
    Naito, Hiroaki
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2011, 196 (06) : W796 - W799
  • [50] Deep Learning-Based Contrast Enhanced Dual-Energy CT Imaging From Non-Enhanced Single-Energy CT
    Xie, H.
    Lei, Y.
    Wang, T.
    Roper, J.
    Ghavidel, B.
    McDonald, M.
    Yu, D.
    Tang, X.
    Bradley, J.
    Liu, T.
    Yang, X.
    MEDICAL PHYSICS, 2022, 49 (06) : E181 - E182