Instability of multi-mode systems with quadratic Hamiltonians

被引:1
|
作者
Leu, Xuanloc [1 ]
Nguyen, Xuan-Hoai Thi [1 ]
Lee, Jinhyoung [1 ]
机构
[1] Hanyang Univ, Dept Phys, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
geometric Hamiltonian; quadratic Hamiltonian; instability; optomechanical system; QUANTUM-NOISE REDUCTION; GROUND-STATE; MIRROR; MOTION; CAVITY;
D O I
10.1088/1402-4896/ad35f4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel geometric approach for determining the unique structure of a Hamiltonian and establishing an instability criterion for quantum quadratic systems. Our geometric criterion provides insights into the underlying geometric perspective of instability: A quantum quadratic system is dynamically unstable if and only if its Hamiltonian is non-elliptic (i.e., hyperbolic or lineal). By applying our geometric method, we analyze the stability of two-mode and three-mode optomechanical systems. Remarkably, our approach demonstrates that these systems can be stabilized over a wider range of system parameters compared to the conventional rotating wave approximation (RWA) assumption. Furthermore, we reveal that the systems transit their phases from stable to unstable, when the system parameters cross specific critical boundaries. The results imply the presence of multistability in the optomechanical systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Lindblad Dynamics and Disentanglement in Multi-Mode Bosonic Systems
    Kiselev, Alexei D.
    Ali, Ranim
    Rybin, Andrei, V
    ENTROPY, 2021, 23 (11)
  • [42] The multi-mode gyrotron
    Savilov, A. V.
    Glyavin, M. Yu.
    Philippov, V. N.
    PHYSICS OF PLASMAS, 2011, 18 (10)
  • [43] Multi-Dimensional Multi-Mode Systems: Structure and Optimal Control
    Verriest, Erik I.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 7021 - 7026
  • [44] Optical Interconnects Using Single-Mode and Multi-Mode VCSEL and Multi-Mode Fiber
    Ledentsov, N. N.
    Shchukin, V. A.
    Kalosha, V. P.
    Ledentsov, N., Jr.
    Chorchos, L.
    Turkiewicz, J. P.
    Hecht, U.
    Kurth, P.
    Gerfers, F.
    Lavrencik, J.
    Varughese, S.
    Ralph, S. E.
    2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2020,
  • [45] The reachable set of single-mode quadratic Hamiltonians
    Shackerley-Bennett, Uther
    Pitchford, Alexander
    Genoni, Marco G.
    Serafini, Alessio
    Burgarth, Daniel K.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (15)
  • [46] Freeze out of multi-mode Richtmyer-Meshkov instability using particles
    Wu, Qi
    Zhang, Yousheng
    Meng, Baoqing
    Shi, Yipeng
    Tian, Baolin
    PHYSICS OF FLUIDS, 2024, 36 (06)
  • [47] Aeroelastic instability of long-span suspended bridges: a multi-mode approach
    D'Asdia, P
    Sepe, V
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 1998, 74-6 : 849 - 857
  • [48] Richtmyer-Meshkov instability on two-dimensional multi-mode interfaces
    Liang, Yu
    Liu, Lili
    Zhai, Zhigang
    Ding, Juchun
    Si, Ting
    Luo, Xisheng
    JOURNAL OF FLUID MECHANICS, 2021, 928
  • [49] Mode switch timing analysis for component-based multi-mode systems
    Yin, Hang
    Hansson, Hans
    JOURNAL OF SYSTEMS ARCHITECTURE, 2013, 59 (10) : 1299 - 1318
  • [50] The Pulse Response of Multi-Mode Fibers in Mode-Division Multiplexing Systems
    Jiang, Mengjiang
    Yi, Xingwen
    Li, Fan
    2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 534 - 536