Instability of multi-mode systems with quadratic Hamiltonians

被引:1
|
作者
Leu, Xuanloc [1 ]
Nguyen, Xuan-Hoai Thi [1 ]
Lee, Jinhyoung [1 ]
机构
[1] Hanyang Univ, Dept Phys, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
geometric Hamiltonian; quadratic Hamiltonian; instability; optomechanical system; QUANTUM-NOISE REDUCTION; GROUND-STATE; MIRROR; MOTION; CAVITY;
D O I
10.1088/1402-4896/ad35f4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel geometric approach for determining the unique structure of a Hamiltonian and establishing an instability criterion for quantum quadratic systems. Our geometric criterion provides insights into the underlying geometric perspective of instability: A quantum quadratic system is dynamically unstable if and only if its Hamiltonian is non-elliptic (i.e., hyperbolic or lineal). By applying our geometric method, we analyze the stability of two-mode and three-mode optomechanical systems. Remarkably, our approach demonstrates that these systems can be stabilized over a wider range of system parameters compared to the conventional rotating wave approximation (RWA) assumption. Furthermore, we reveal that the systems transit their phases from stable to unstable, when the system parameters cross specific critical boundaries. The results imply the presence of multistability in the optomechanical systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Structural Analysis of Multi-Mode DAE Systems
    Benveniste, Albert
    Caillaud, Benoit
    Elmqvist, Hilding
    Ghorbal, Khalil
    Otter, Martin
    Pouzet, Marc
    PROCEEDINGS OF THE 20TH INTERNATIONAL CONFERENCE ON HYBRID SYSTEMS: COMPUTATION AND CONTROL (PART OF CPS WEEK) (HSCC' 17), 2017, : 253 - 263
  • [22] Gain and Temporal Equalizer for Multi-Mode Systems
    Mazur, Mikael
    Fontaine, Nicolas K.
    Zhang, Yuanhang
    Chen, Haoshuo
    Kim, K. W.
    Veronese, Riccardo
    Li, Guifang
    Palmieri, Luca
    Bigot, Marianne
    Sillard, Pierre
    Ryf, Roland
    Neilson, David T.
    2020 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2020,
  • [23] Multi-mode tunnel boring machines / Multi-Mode Tunnelvortriebsmaschinen
    Burger, Werner
    Geomechanik und Tunnelbau, 2014, 7 (01): : 18 - 30
  • [24] Multi-mode wideband antenna based on multi-mode resonator
    Wu, Rui
    Lin, Jianhong
    Cai, Shuting
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2023, 73 (03) : 225 - 234
  • [25] Synchronous semantics of multi-mode multi-periodic systems
    Fort, Frederic
    Forget, Julien
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1248 - 1257
  • [26] MULTI-MODE MULTI-DIMENSIONAL SYSTEMS WITH POISSONIAN SEQUENCING
    Verriest, Erik I.
    COMMUNICATIONS IN INFORMATION AND SYSTEMS, 2009, 9 (01) : 77 - 102
  • [27] ON FERMI LATTICE SYSTEMS WITH QUADRATIC HAMILTONIANS
    NARNHOFER, H
    ACTA PHYSICA AUSTRIACA, 1970, 31 (04): : 349 - +
  • [28] Coherent States of Systems with Quadratic Hamiltonians
    V. G. Bagrov
    D. M. Gitman
    A. S. Pereira
    Brazilian Journal of Physics, 2015, 45 : 369 - 375
  • [29] Coherent States of Systems with Quadratic Hamiltonians
    Bagrov, V. G.
    Gitman, D. M.
    Pereira, A. S.
    BRAZILIAN JOURNAL OF PHYSICS, 2015, 45 (03) : 369 - 375
  • [30] Tunable optical bistability in multi-mode optomechanical systems
    Wang, Zhen
    Jiang, Cheng
    He, Yong
    Wang, Chang-Ying
    Li, Heng-Mei
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (02) : 579 - 585