Error Analysis of Serendipity Virtual Element Methods for Semilinear Parabolic Integro-Differential Equations

被引:1
|
作者
Xu, Yang [1 ]
Zhou, Zhenguo [1 ]
Zhao, Jingjun [1 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Serendipity virtual element method; Parabolic integro-differential equation; Polygonal mesh; DISCONTINUOUS GALERKIN METHOD; TIME DISCRETIZATION; APPROXIMATION;
D O I
10.1007/s10915-024-02610-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this study is to evaluate the performance of serendipity virtual element methods in solving semilinear parabolic integro-differential equations with variable coefficients. The primary advantage of this method, in comparison to the standard (enhanced) virtual element methods, lies in the reduction of internal-moment degrees of freedom, which can speed up the iterative algorithms when using the quasi-interpolation operators to approximate nonlinear terms. The temporal discretization is obtained with the backward-Euler scheme. To maintain consistency with the accuracy order of the backward-Euler scheme, the integral term is approximated using the left rectangular quadrature rule. Within the serendipity virtual element framework, we introduced a Ritz-Volterra projection and conducted a comprehensive analysis of its approximation properties. Building upon this analysis, we ultimately provided optimal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-seminorm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm error estimates for both the semi-discrete and fully discrete schemes. Finally, two numerical examples that serve to illustrate and validate the theoretical findings are presented.
引用
收藏
页数:43
相关论文
共 50 条
  • [41] EXPLICIT EXPONENTIAL RUNGE--KUTTA METHODS FOR SEMILINEAR INTEGRO-DIFFERENTIAL EQUATIONS
    Ostermann, Alexander
    Saedpanah, Fardin
    Vaisi, Nasrin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (03) : 1405 - 1425
  • [42] H1-Galerkin mixed finite element methods for parabolic partial integro-differential equations
    Pani, AK
    Fairweather, G
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (02) : 231 - 252
  • [43] Existence of solutions of integro-differential semilinear elliptic equations
    Correa, Francisco J. S. A.
    Lima, Natan de Assis
    de Lima, Romildo N.
    APPLICABLE ANALYSIS, 2023, 102 (06) : 1821 - 1839
  • [44] Semilinear fractional integro-differential equations with compact semigroup
    Rashid, M. H. M.
    El-Qaderi, Yahya
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : 6276 - 6282
  • [45] Finite central difference/finite element approximations for parabolic integro-differential equations
    Wulan Li
    Xu Da
    Computing, 2010, 90 : 89 - 111
  • [46] Finite central difference/finite element approximations for parabolic integro-differential equations
    Li, Wulan
    Da, Xu
    COMPUTING, 2010, 90 (3-4) : 89 - 111
  • [47] ERROR ANALYSIS OF FRACTIONAL COLLOCATION METHODS FOR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH NONCOMPACT OPERATORS
    Ma, Zheng
    Huang, Chengming
    Alikhanov, Anatoly A.
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2025, 43 (03): : 690 - 707
  • [48] COLLOCATION METHODS FOR INTEGRO-DIFFERENTIAL EQUATIONS
    HANGELBROEK, RJ
    KAPER, HG
    LEAF, GK
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (03) : 377 - 390
  • [49] Galerkin Finite Element Methods Error Estimates Analysis for [1+2] Equations of Integro-Differential on Linear Triangular
    Al-Abadi, Ali Kamil
    Abd, Shurooq Kamel
    BAGHDAD SCIENCE JOURNAL, 2025, 22 (03)
  • [50] Integro-differential equations and operational methods
    Dattoli, G
    Pacciani, P
    Ricci, PE
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 2004, 119 (04): : 373 - 380