Error Analysis of Serendipity Virtual Element Methods for Semilinear Parabolic Integro-Differential Equations

被引:1
|
作者
Xu, Yang [1 ]
Zhou, Zhenguo [1 ]
Zhao, Jingjun [1 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Serendipity virtual element method; Parabolic integro-differential equation; Polygonal mesh; DISCONTINUOUS GALERKIN METHOD; TIME DISCRETIZATION; APPROXIMATION;
D O I
10.1007/s10915-024-02610-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this study is to evaluate the performance of serendipity virtual element methods in solving semilinear parabolic integro-differential equations with variable coefficients. The primary advantage of this method, in comparison to the standard (enhanced) virtual element methods, lies in the reduction of internal-moment degrees of freedom, which can speed up the iterative algorithms when using the quasi-interpolation operators to approximate nonlinear terms. The temporal discretization is obtained with the backward-Euler scheme. To maintain consistency with the accuracy order of the backward-Euler scheme, the integral term is approximated using the left rectangular quadrature rule. Within the serendipity virtual element framework, we introduced a Ritz-Volterra projection and conducted a comprehensive analysis of its approximation properties. Building upon this analysis, we ultimately provided optimal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>1$$\end{document}-seminorm and L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>2$$\end{document}-norm error estimates for both the semi-discrete and fully discrete schemes. Finally, two numerical examples that serve to illustrate and validate the theoretical findings are presented.
引用
收藏
页数:43
相关论文
共 50 条