The Solutions of the Diophantine Equations px

被引:0
|
作者
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Dept Math, Fac Sci & Technol, Lop Buri 15000, Thailand
关键词
Diophantine equation; Mihailescu's Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be prime numbers. In this article, we show that all nonnegative integer solutions of the Diophantine equation p(x)+p(y) = z(q) are (p, q, x, y, z) = (2, q, qt+q-1, qt+q-1, 2(t+1)), (2(q) -1, q, qt+ 1, qt, 2(2(q) - negative integer solutions of the Diophantine equation p(x) - p(y) = z(q) are (p, q, x, y, z) = (p, q, t, t, 0), (2, q, qt + 1, qt, 2(t)), (4v(2) + 1, 2, 2t + 1, 2t, 2v(4v(2) + 1)(t)), (3,3,3t + 2,3t, 2 center dot 3(t)), where t is a non-negative integer and v is a positive integer.
引用
收藏
页码:621 / 623
页数:3
相关论文
共 50 条