The Solutions of the Diophantine Equations px

被引:0
|
作者
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Dept Math, Fac Sci & Technol, Lop Buri 15000, Thailand
关键词
Diophantine equation; Mihailescu's Theorem;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p and q be prime numbers. In this article, we show that all nonnegative integer solutions of the Diophantine equation p(x)+p(y) = z(q) are (p, q, x, y, z) = (2, q, qt+q-1, qt+q-1, 2(t+1)), (2(q) -1, q, qt+ 1, qt, 2(2(q) - negative integer solutions of the Diophantine equation p(x) - p(y) = z(q) are (p, q, x, y, z) = (p, q, t, t, 0), (2, q, qt + 1, qt, 2(t)), (4v(2) + 1, 2, 2t + 1, 2t, 2v(4v(2) + 1)(t)), (3,3,3t + 2,3t, 2 center dot 3(t)), where t is a non-negative integer and v is a positive integer.
引用
收藏
页码:621 / 623
页数:3
相关论文
共 50 条
  • [21] On the solutions of a system of two Diophantine equations
    JiaGui Luo
    PingZhi Yuan
    Science China Mathematics, 2014, 57 : 1401 - 1418
  • [22] On the solutions of a system of two Diophantine equations
    LUO JiaGui
    YUAN PingZhi
    Science China(Mathematics), 2014, 57 (07) : 1401 - 1418
  • [23] On the finiteness of solutions for certain Diophantine equations
    Ouzahra, Mohamed
    RAMANUJAN JOURNAL, 2024, 65 (01): : 263 - 275
  • [24] EXPLICIT SOLUTIONS OF PYRAMIDAL DIOPHANTINE EQUATIONS
    BERNSTEIN, L
    CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (02): : 177 - +
  • [25] INTEGER SOLUTIONS OF A PAIR OF DIOPHANTINE EQUATIONS
    OPPENHEI.A
    AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (03): : 313 - &
  • [26] Grobner Bases and Solutions to Diophantine Equations
    Cipu, Mihai
    PROCEEDINGS OF THE 10TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING, 2009, : 77 - 80
  • [27] Function solutions to certain Diophantine equations
    Baoulina, Ioulia N.
    Fischer, Wilhelm
    Steuding, Joern
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (01) : 78 - 92
  • [28] SOME DIOPHANTINE EQUATIONS WITH MANY SOLUTIONS
    ERDOS, P
    STEWART, CL
    TIJDEMAN, R
    COMPOSITIO MATHEMATICA, 1988, 66 (01) : 37 - 56
  • [29] ON DIOPHANTINE EQUATIONS WHICH HAVE NO SOLUTIONS
    SELFRIDGE, JL
    NICOL, CA
    VANDIVER, HS
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1956, 42 (05) : 264 - 266
  • [30] Optical solutions for linear Diophantine equations
    Muntean, O.
    Oltean, M.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2009, 11 (11): : 1728 - 1734