Unknown DDoS Attack Detection with Fuzzy C-Means Clustering and Spatial Location Constraint Prototype Loss

被引:4
|
作者
Nguyen, Thanh-Lam [1 ]
Kao, Hao [1 ]
Nguyen, Thanh-Tuan [2 ]
Horng, Mong-Fong [1 ]
Shieh, Chin-Shiuh [1 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung 807618, Taiwan
[2] Nha Trang Univ, Dept Elect & Automat Engn, Nha Trang 650000, Vietnam
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2024年 / 78卷 / 02期
关键词
Cybersecurity; DDoS; unknown attack detection; machine learning; deep learning; incremental learning; convolutional neural networks (CNN); open-set recognition (OSR); spatial location constraint prototype loss; fuzzy c-means; CICIDS2017; CICDDoS2019;
D O I
10.32604/cmc.2024.047387
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Since its inception, the Internet has been rapidly evolving. With the advancement of science and technology and the explosive growth of the population, the demand for the Internet has been on the rise. Many applications in education, healthcare, entertainment, science, and more are being increasingly deployed based on the internet. Concurrently, malicious threats on the internet are on the rise as well. Distributed Denial of Service (DDoS) attacks are among the most common and dangerous threats on the internet today. The scale and complexity of DDoS attacks are constantly growing. Intrusion Detection Systems (IDS) have been deployed and have demonstrated their effectiveness in defense against those threats. In addition, the research of Machine Learning (ML) and Deep Learning (DL) in IDS has gained effective results and significant attention. However, one of the challenges when applying ML and DL techniques in intrusion detection is the identification of unknown attacks. These attacks, which are not encountered during the system's training, can lead to misclassification with significant errors. In this research, we focused on addressing the issue of Unknown Attack Detection, combining two methods: Spatial Location Constraint Prototype Loss (SLCPL) and Fuzzy C -Means (FCM). With the proposed method, we achieved promising results compared to traditional methods. The proposed method demonstrates a very high accuracy of up to 99.8% with a low false positive rate for known attacks on the Intrusion Detection Evaluation Dataset (CICIDS2017) dataset. Particularly, the accuracy is also very high, reaching 99.7%, and the precision goes up to 99.9% for unknown DDoS attacks on the DDoS Evaluation Dataset (CICDDoS2019) dataset. The success of the proposed method is due to the combination of SLCPL, an advanced Open -Set Recognition (OSR) technique, and FCM, a traditional yet highly applicable clustering technique. This has yielded a novel method in the field of unknown attack detection. This further expands the trend of applying DL and ML techniques in the development of intrusion detection systems and cybersecurity. Finally, implementing the proposed method in real -world systems can enhance the security capabilities against increasingly complex threats on computer networks.
引用
收藏
页码:2181 / 2205
页数:25
相关论文
共 50 条
  • [21] Spatial Rough Intuitionistic Fuzzy C-Means Clustering for MRI Segmentation
    Kala, R.
    Deepa, P.
    NEURAL PROCESSING LETTERS, 2021, 53 (02) : 1305 - 1353
  • [22] An Enhanced Spatial Intuitionistic Fuzzy C-means Clustering for Image Segmentation
    Arora, Jyoti
    Tushir, Meena
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 646 - 655
  • [23] Research on the Location Planning of a Dry Port Based on Fuzzy C-Means Clustering
    Yang, Wei
    Yang, Fan
    Wang, Fan
    Tan, Huachun
    Ran, Bin
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 4991 - 5001
  • [24] Lightning location method based on improved fuzzy C-means clustering algorithm
    Li, Tao
    Chen, Jie
    Wang, Lina
    Ren, Yongjun
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2021, 35 (03) : 133 - 142
  • [25] A fuzzy clustering model of data and fuzzy c-means
    Nascimento, S
    Mirkin, B
    Moura-Pires, F
    NINTH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2000), VOLS 1 AND 2, 2000, : 302 - 307
  • [26] Fault Detection for Photovoltaic Systems Using Fuzzy C-Means Clustering
    Barbosa Jr, Jadir
    de Medeiros, Renan L. P.
    Ayres Jr, Florindo A. C.
    Chaves Filho, Joao Edgar
    Lucena Jr, Vicente F.
    Bessa, Iury
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [27] Intrusion Detection Based on Simulated Annealing and Fuzzy c-means Clustering
    Wu Jian
    Feng GuoRui
    MINES 2009: FIRST INTERNATIONAL CONFERENCE ON MULTIMEDIA INFORMATION NETWORKING AND SECURITY, VOL 2, PROCEEDINGS, 2009, : 382 - 385
  • [28] Fuzzy C-Means Clustering: A Review of Applications in Breast Cancer Detection
    Krasnov, Daniel
    Davis, Dresya
    Malott, Keiran
    Chen, Yiting
    Shi, Xiaoping
    Wong, Augustine
    ENTROPY, 2023, 25 (07)
  • [29] Use of Possibilistic Fuzzy C-means Clustering for Telecom Fraud Detection
    Subudhi, Sharmila
    Panigrahi, Suvasini
    COMPUTATIONAL INTELLIGENCE IN DATA MINING, CIDM 2016, 2017, 556 : 633 - 641
  • [30] Application of Spatiotemporal Fuzzy C-Means Clustering for Crime Spot Detection
    Ansari, Mohd Yousuf
    Prakash, Anand
    Mainuddin
    DEFENCE SCIENCE JOURNAL, 2018, 68 (04) : 374 - 380