Use of Possibilistic Fuzzy C-means Clustering for Telecom Fraud Detection

被引:3
|
作者
Subudhi, Sharmila [1 ]
Panigrahi, Suvasini [1 ]
机构
[1] Veer Surendra Sai Univ Technol, Dept Comp Sci & IT, Burla 768018, India
关键词
Call detail records; Clustering; Possibilistic fuzzy c-means; Fraud detection;
D O I
10.1007/978-981-10-3874-7_60
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel approach for detecting fraudulent activities in mobile telecommunication networks by using a possibilistic fuzzy c-means clustering. Initially, the optimal values of the clustering parameters are estimated experimentally. The behavioral profile modelling of subscribers is then done by applying the clustering algorithm on two relevant call features selected from the subscriber's historical call records. Any symptoms of intrusive activities are detected by comparing the most recent calling activity with their normal profile. A new calling instance is identified as malicious when its distance measured from the profile cluster centers exceeds a preset threshold. The effectiveness of our system is justified by carrying out large-scale experiments on a real-world dataset.
引用
收藏
页码:633 / 641
页数:9
相关论文
共 50 条
  • [1] RFID intrusion detection with possibilistic fuzzy c-Means clustering
    Yang, Haidong
    Li, Chunsheng
    Hu, Jue
    Journal of Computational Information Systems, 2010, 6 (08): : 2623 - 2632
  • [2] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530
  • [3] Novel possibilistic fuzzy c-means clustering
    School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
    不详
    Tien Tzu Hsueh Pao, 2008, 10 (1996-2000):
  • [4] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    SOFT COMPUTING, 2010, 14 (05) : 487 - 494
  • [5] On tolerant fuzzy c-means clustering and tolerant possibilistic clustering
    Yukihiro Hamasuna
    Yasunori Endo
    Sadaaki Miyamoto
    Soft Computing, 2010, 14 : 487 - 494
  • [6] Possibilistic C-Means Clustering Using Fuzzy Relations
    Zarandi, M. H. Fazel
    Kalhori, M. Rostam Niakan
    Jahromi, M. F.
    PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1137 - 1142
  • [7] A Modified Possibilistic Fuzzy c-Means Clustering Algorithm
    Qu, Fuheng
    Hu, Yating
    Xue, Yaohong
    Yang, Yong
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 858 - 862
  • [8] A Possibilistic Multivariate Fuzzy c-Means Clustering Algorithm
    Himmelspach, Ludmila
    Conrad, Stefan
    SCALABLE UNCERTAINTY MANAGEMENT, SUM 2016, 2016, 9858 : 338 - 344
  • [9] Possibilistic and fuzzy c-means clustering with weighted objects
    Miyamoto, Sadaaki
    Inokuchi, Ryo
    Kuroda, Youhei
    2006 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-5, 2006, : 869 - +
  • [10] A Weight Possibilistic Fuzzy C-Means Clustering Algorithm
    Chen, Jiashun
    Zhang, Hao
    Pi, Dechang
    Kantardzic, Mehmed
    Yin, Qi
    Liu, Xin
    SCIENTIFIC PROGRAMMING, 2021, 2021