On the Temporal Tweezing of Cavity Solitons

被引:0
|
作者
Rossi, Julia [1 ,2 ]
Chandramouli, Sathyanarayanan [3 ]
Carretero-Gonzalez, Ricardo [1 ,2 ]
Kevrekidis, Panayotis G. [3 ]
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
Optical tweezers; Cavity solitons; Complex Ginzburg-Landau equation; Lugiato-Lefever equation; Non-conservative Lagrangian formulation; SLOW LIGHT; DYNAMICS; MANIPULATION; MODULATION;
D O I
10.1007/s44198-024-00193-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Jang et al., Nat Commun 6:7370 (2015), where the authors experimentally tweeze cavity solitons in a passive loop of optical fiber, we study the amenability to tweezing of cavity solitons as the properties of a localized tweezer are varied. The system is modeled by the Lugiato-Lefever equation, a variant of the complex Ginzburg-Landau equation. We produce an effective, localized, trapping tweezer potential by assuming a Gaussian phase-modulation of the holding beam. The potential for tweezing is then assessed as the total (temporal) displacement and speed of the tweezer are varied, and corresponding phase diagrams are presented. As the relative speed of the tweezer is increased we find two possible dynamical scenarios: successful tweezing and release of the cavity soliton. We also deploy a non-conservative variational approximation (NCVA) based on a Lagrangian description which reduces the original dissipative partial differential equation to a set of coupled ordinary differential equations for the cavity soliton parameters. We illustrate the ability of the NCVA to accurately predict the separatrix between successful and failed tweezing. This showcases the versatility of the NCVA to provide a low-dimensional description of the experimental realization of the temporal tweezing.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] Ultrasonic cavity solitons
    Perez-Arjona, I.
    Sanchez-Morcillo, V. J.
    de Valcarcel, G. J.
    EPL, 2008, 82 (01)
  • [42] Dichromatic cavity solitons
    Lederer, F
    Etrich, C
    Peschel, U
    Michaelis, D
    CHAOS SOLITONS & FRACTALS, 1999, 10 (4-5) : 895 - 903
  • [43] Temporal Tweezing of Polarization Domain Walls in a Fiber Kerr Resonator
    Fatome, J.
    Berti, N.
    Kibler, B.
    Garbin, B.
    Murdoch, S. G.
    Erkintalo, M.
    Coen, S.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [44] Spontaneous creation and annihilation of temporal cavity solitons in a coherently driven passive fiber resonator
    Luo, Kathy
    Jang, Jae K.
    Coen, Stephane
    Murdoch, Stuart G.
    Erkintalo, Miro
    OPTICS LETTERS, 2015, 40 (16) : 3735 - 3738
  • [45] Temporal cavity solitons in synchronously-driven Fabry-Perot microresonators.
    Obrzud, Ewelina
    Brasch, Victor
    Lecomte, Steve
    Herr, Tobias
    LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XX, 2018, 10518
  • [46] Interaction of Spatial and Temporal Cavity Solitons in Mode-Locked Lasers and Passive Cavities
    Turaev, D.
    Vladimirov, A. G.
    Zelik, S.
    2016 INTERNATIONAL CONFERENCE LASER OPTICS (LO), 2016,
  • [47] Stimulated Raman Scattering Imposes Fundamental Limits to the Duration and Bandwidth of Temporal Cavity Solitons
    Wang, Yadong
    Anderson, Miles
    Coen, Stephane
    Murdoch, Stuart G.
    Erkintalo, Miro
    PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [48] Bright Cavity Polariton Solitons
    Egorov, O. A.
    Skryabin, D. V.
    Yulin, A. V.
    Lederer, F.
    PHYSICAL REVIEW LETTERS, 2009, 102 (15)
  • [49] Oscillating dark cavity solitons
    Michaelis, D
    Peschel, U
    Lederer, F
    OPTICS LETTERS, 1998, 23 (23) : 1814 - 1816
  • [50] Cavity solitons in bidirectional lasers
    Perez-Arjona, Isabel
    Sanchez-Morcillo, Victor J.
    Roldan, Eugenio
    OPTICS LETTERS, 2007, 32 (21) : 3221 - 3223