On the Temporal Tweezing of Cavity Solitons

被引:0
|
作者
Rossi, Julia [1 ,2 ]
Chandramouli, Sathyanarayanan [3 ]
Carretero-Gonzalez, Ricardo [1 ,2 ]
Kevrekidis, Panayotis G. [3 ]
机构
[1] San Diego State Univ, Nonlinear Dynam Syst Grp, Computat Sci Res Ctr, San Diego, CA 92182 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
Optical tweezers; Cavity solitons; Complex Ginzburg-Landau equation; Lugiato-Lefever equation; Non-conservative Lagrangian formulation; SLOW LIGHT; DYNAMICS; MANIPULATION; MODULATION;
D O I
10.1007/s44198-024-00193-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by the work of Jang et al., Nat Commun 6:7370 (2015), where the authors experimentally tweeze cavity solitons in a passive loop of optical fiber, we study the amenability to tweezing of cavity solitons as the properties of a localized tweezer are varied. The system is modeled by the Lugiato-Lefever equation, a variant of the complex Ginzburg-Landau equation. We produce an effective, localized, trapping tweezer potential by assuming a Gaussian phase-modulation of the holding beam. The potential for tweezing is then assessed as the total (temporal) displacement and speed of the tweezer are varied, and corresponding phase diagrams are presented. As the relative speed of the tweezer is increased we find two possible dynamical scenarios: successful tweezing and release of the cavity soliton. We also deploy a non-conservative variational approximation (NCVA) based on a Lagrangian description which reduces the original dissipative partial differential equation to a set of coupled ordinary differential equations for the cavity soliton parameters. We illustrate the ability of the NCVA to accurately predict the separatrix between successful and failed tweezing. This showcases the versatility of the NCVA to provide a low-dimensional description of the experimental realization of the temporal tweezing.
引用
收藏
页数:27
相关论文
共 50 条
  • [31] Experimental observations of breathing Kerr temporal cavity solitons at large detunings
    Chen, Wei
    Garbin, Bruno
    Nielsen, Alexander U.
    Coen, Stephane
    Murdoch, Stuart G.
    Erkintalo, Miro
    OPTICS LETTERS, 2018, 43 (15) : 3674 - 3677
  • [32] Temporal Cavity Solitons With Tunable High-Repetition-Rate Generation in a Brillouin Pulse Laser Cavity
    Xiong, Wenhao
    Yao, Chuanfei
    Li, Pingxue
    Wang, Yixuan
    Zhu, Feiyu
    IEEE PHOTONICS JOURNAL, 2022, 14 (03):
  • [33] Self-Starting Temporal Cavity Solitons in a Laser-based Microcomb
    Cutrona, Antonio
    Hanzard, Pierre-Henry
    Rowley, Maxwell
    Malomed, Boris
    Oppo, Gian-Luca
    Totero-Gongora, Juan-Sebastian
    Peccianti, Marco
    Pasquazi, Alessia
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2021,
  • [34] Spontaneous polarization symmetry breaking of temporal cavity solitons in optical Kerr resonators
    Xu, Gang
    Nielsen, Alexander U.
    Garbin, Bruno
    Fatome, Julien
    Hill, Lewis
    Oppo, Gian-Luca
    Murdoch, Stuart G.
    Erkintalo, Miro
    Coen, Stephane
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [35] Spatio-temporal stability of 1D Kerr cavity solitons
    Gelens, L.
    Parra-Rivas, P.
    Leo, F.
    Gomila, D.
    Matias, M. A.
    Coen, S.
    NONLINEAR OPTICS AND ITS APPLICATIONS VIII; AND QUANTUM OPTICS III, 2014, 9136
  • [36] Fundamental Limits to Duration and Bandwidth of Temporal Cavity Solitons due to Raman Scattering
    Wang, Yadong
    Anderson, Miles
    Coen, Stephane
    Murdoch, Stuart G.
    Erkintalo, Miro
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [37] Cavity solitons synchronization
    Anbardan, Shayesteh Rahmani
    Kheradmand, Reza
    Prati, Franco
    JOURNAL OF NANOPHOTONICS, 2019, 13 (01)
  • [38] Theory of cavity solitons
    Firth, WJ
    SOLITON-DRIVEN PHOTONICS, 2001, 31 : 459 - 485
  • [39] Walking cavity solitons
    Skryabin, D.V.
    Champneys, A.R.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 63 (6 II): : 1 - 066610
  • [40] Walking cavity solitons
    Skryabin, DV
    Champneys, AR
    PHYSICAL REVIEW E, 2001, 63 (06):